527,172 research outputs found
Overlapping fragments method for electronic structure calculation of large systems
We present a method for the calculation of electronic structure of systems
that contain tens of thousands of atoms. The method is based on the division of
the system into mutually overlapping fragments and the representation of the
single-particle Hamiltonian in the basis of eigenstates of these fragments. In
practice, for the range of system size that we studied (up to tens of thousands
of atoms), {the dominant part of the calculation scales} linearly with the size
of the system when all the states within a fixed energy interval are required.
The method is highly suitable for making good use of parallel computing
architectures. We illustrate the method by applying it to diagonalize the
single-particle Hamiltonian obtained using the density functional theory based
charge patching method in the case of amorphous alkane and polythiophene
polymers.Comment: 9 pages, 10 figures, the version accepted in J. Chem. Phy
Quantum Transport Calculations Using Periodic Boundary Conditions
An efficient new method is presented to calculate the quantum transports
using periodic boundary conditions. This method allows the use of conventional
ground state ab initio programs without big changes. The computational effort
is only a few times of a normal ground state calculation, thus it makes
accurate quantum transport calculations for large systems possible.Comment: 9 pages, 6 figure
Intrinsic Defects and Electronic Conductivity of TaON: First-Principles Insights
As a compound in between the tantalum oxide and nitride, the tantalum
oxynitride TaON is expected to combine their advantages and act as an efficient
visible-light-driven photocatalyst. In this letter, using hybrid functional
calculations we show that TaON has different defect properties from the binary
tantalum oxide and nitride: (i) instead of O or N vacancies or Ta
interstitials, the antisite is the dominant defect, which determines its
intrinsic n-type conductivity and the p-type doping difficulty; (ii) the
antisite has a shallower donor level than O or N vacancies, with a delocalized
distribution composed mainly of the Ta orbitals, which gives rise to
better electronic conductivity in the oxynitride than in the oxide and nitride.
The phase stability analysis reveals that the easy oxidation of TaON is
inevitable under O rich conditions, and a relatively O poor condition is
required to synthesize stoichiometric TaON samples
Dirac spin gapless semiconductors: Ideal platforms for massless and dissipationless spintronics and new (quantum) anomalous spin Hall effects
It is proposed that the new generation of spintronics should be ideally
massless and dissipationless for the realization of ultra-fast and
ultra-low-power spintronic devices. We demonstrate that the spin-gapless
materials with linear energy dispersion are unique materials that can realize
these massless and dissipationless states. Furthermore, we propose four new
types of spin Hall effects which consist of spin accumulation of equal numbers
of electrons and holes having the same or opposite spin polarization at the
sample edge in Hall effect measurements, but with vanishing Hall voltage. These
new Hall effects can be classified as (quantum) anomalous spin Hall effects.
The physics for massless and dissipationless spintronics and the new spin Hall
effects are presented for spin-gapless semiconductors with either linear or
parabolic dispersion. New possible candidates for Dirac-type or parabolic type
spin-gapless semiconductors are demonstrated in ferromagnetic monolayers of
simple oxides with either honeycomb or square lattices.Comment: 5 pages, 7 figue
- …
