10,394 research outputs found
Galectin-3 interacts with the cell surface glycoprotein CD146 (MCAM, MUC18) and induces secretion of metastasis-promoting cytokines from vascular endothelial cells
The galactoside-binding protein galectin-3 is increasingly recognized as an important player in cancer development, progression, and metastasis via its interactions with various galactoside-terminated glycans. We have shown previously that circulating galectin-3, which is increased up to 30-fold in cancer patients, promotes blood-borne metastasis in an animal cancer model. This effect is partly attributable to the interaction of galectin-3 with unknown receptor(s) on vascular endothelial cells and causes endothelial secretion of several metastasis-promoting cytokines. Here we sought to identify the galectin-3-binding molecule(s) on the endothelial cell surface responsible for the galectin-3-mediated cytokine secretion. Using two different galectin-3 affinity purification processes, we extracted four cell membrane glycoproteins, CD146/melanoma cell adhesion molecule (MCAM)/MUC18, CD31/platelet endothelial cell adhesion molecule-1 (PECAM-1), CD144/VE-cadherin, and CD106/Endoglin, from vascular endothelial cells. CD146 was the major galectin-3-binding ligand and strongly co-localized with galectin-3 on endothelial cell surfaces treated with exogenous galectin-3. Moreover, galectin-3 bound to N-linked glycans on CD146 and induced CD146 dimerization and subsequent activation of AKT signaling. siRNA-mediated suppression of CD146 expression completely abolished the galectin-3-induced secretion of IL-6 and G-CSF cytokines from the endothelial cells. Thus, CD146/MCAM is the functional galectin-3-binding ligand on endothelial cell surfaces responsible for galectin-3-induced secretion of metastasis-promoting cytokines. We conclude that CD146/MCAM interactions with circulating galectin-3 may have an important influence on cancer progression and metastasis
Measuring the Polarization of Boosted Hadronic Tops
We propose a new technique for measuring the polarization of hadronically
decaying boosted top quarks. In particular, we apply a subjet-based technique
to events where the decay products of the top are clustered within a single
jet. The technique requires neither b-tagging nor W-reconstruction, and does
not rely on assumptions about either the top production mechanism or the
sources of missing energy in the event. We include results for various new
physics scenarios made with different Monte Carlo generators to demonstrate the
robustness of the technique.Comment: v2: version accepted for publication in JHE
Transmit Power Minimization for MIMO Systems of Exponential Average BER with Fixed Outage Probability
This document is the Accepted Manuscript version of the following article: Dian-Wu Yue, and Yichuang Sun, ‘Transmit Power Minimization for MIMO Systems of Exponential Average BER with Fixed Outage Probability’, Wireless Personal Communications, Vol. 90 (4): 1951-1970, first available online on 20 June 2016. Under embargo. Embargo end date: 20 June 2017. The final publication is available at Springer via https://link.springer.com/article/10.1007%2Fs11277-016-3432-4This paper is concerned with a wireless multiple-antenna system operating in multiple-input multiple-output (MIMO) fading channels with channel state information being known at both transmitter and receiver. By spatiotemporal subchannel selection and power control, it aims to minimize the average transmit power (ATP) of the MIMO system while achieving an exponential type of average bit error rate (BER) for each data stream. Under the constraints on each subchannel that individual outage probability and average BER are given, based on a traditional upper bound and a dynamic upper bound of Q function, two closed-form ATP expressions are derived, respectively, which can result in two different power allocation schemes. Numerical results are provided to validate the theoretical analysis, and show that the power allocation scheme with the dynamic upper bound can achieve more power savings than the one with the traditional upper bound.Peer reviewe
Differential effect of vinorelbine versus paclitaxel on ERK2 kinase activity during apoptosis in MCF-7 cells
The effects of vinorelbine and paclitaxel on the activity of extracellular signal-regulated protein kinase2 (ERK2), a member of MAP kinase, and its role in the induction of bcl-2 phosphorylation and apoptosis were evaluated in MCF-7 cells. We demonstrated that ERK2 was activated rapidly by vinorelbine, and was inhibited by either paclitaxel or estramustine. A 3-fold increase of ERK2 kinase activity was observed within 30 min when MCF-7 cells were treated with 0.1 μM vinorelbine. In contrast, the same treatment with paclitaxel resulted in a significant decrease of ERK2 kinase activity. We also demonstrated that elevated bcl-2 phosphorylation induced by vinorelbine is paralleled by decrease of a complex formation between bcl-2 and bax, cleavage of poly (ADP) ribose polymerase (PARP) protein, activation of caspase-7, and apoptosis. The levels of bcl-2 phosphorylation, bax, and PARP were not significantly affected by 2′-amino-3′-methoxyflavone (PD 98059), an ERK kinase specific inhibitor. Thus, our data suggest that the apoptosis induced by vinorelbine in MCF-7 cells is mediated through the bcl-2 phosphorylation/bax/caspases pathways, and that activation of ERK2 by vinorelbine does not directly lead to the drug-mediated apoptosis. Since decrease of PARP occurred quickly following the treatment of MCF-7 cells with either 0.1 μM of vinorelbine or paclitaxel, this protein may serve as an early indicator of apoptosis induced not only by DNA damaging agents, but also by antimicrotubule drugs.   http://www.bjcancer.com © 2001 Cancer Research Campaig
A dual fracture model to simulate large-scale flow through fractured rocks
Discrete fracture network models can be used to study groundwater flow in fractured rock masses. However, one may find that it is not easy to apply such models to practical projects as it is difficult to investigate every fracture and measure its hydraulic parameters. To overcome such difficulties, a dual fracture model is proposed. Taking into account the hydraulic characteristics of the various elements of the fracture system, a hydrogeological medium is assumed to consist of two components: the dominant fracture network and the fractured rock matrix. As the dominant fracture network consists of large fractures and faults, it controls the groundwater flow in rock masses. Depending on the permeabilities of the in-fill materials, these fractures and faults may serve as channels or barriers of the flow. The fractured rock matrix, which includes rock blocks and numerous small fractures, plays a secondary role in groundwater flow in such medium. Although the small fractures and rock blocks possess low permeability, their numbers and their total porosity are relatively large. Therefore, they provide large volume for groundwater storage. In this paper, the application of the proposed model to simulate the groundwater flow for a hydropower station before and after reservoir storage is reported. The implications of the results on the design of the station are also highlighted.published_or_final_versio
- …