14,194 research outputs found

    Combining time and position dependent effects on a single machine subject to rate-modifying activities

    Get PDF
    We introduce a general model for single machine scheduling problems, in which the actual processing times of jobs are subject to a combination of positional and time-dependent effects, that are job-independent but additionally depend on certain activities that modify the processing rate of the machine, such as, maintenance. We focus on minimizing two classical objectives: the makespan and the sum of the completion times. The traditional classification accepted in this area of scheduling is based on the distinction between the learning and deterioration effects on one hand, and between the positional effects and the start-time dependent effects on the other hand. Our results show that in the framework of the introduced model such a classification is not necessary, as long as the effects are job-independent. The model introduced in this paper covers most of the previously known models. The solution algorithms are developed within the same general framework and their running times are no worse than those available earlier for problems with less general effects

    Understorey plant community and light availability in conifer plantations and natural hardwood forests in Taiwan

    Get PDF
    Questions: What are the effects of replacing mixed species natural forests with Cryptomeria japonica plantations on understorey plant functional and species diversity? What is the role of the understorey light environment in determining understorey diversity and community in the two types of forest? Location: Subtropical northeast Taiwan. Methods: We examined light environments using hemispherical photography, and diversity and composition of understorey plants of a 35‐yr C. japonica plantation and an adjacent natural hardwood forest. Results: Understorey plant species richness was similar in the two forests, but the communities were different; only 18 of the 91 recorded understorey plant species occurred in both forests. Relative abundance of plants among different functional groups differed between the two forests. Relative numbers of shade‐tolerant and shade‐intolerant seedling individuals were also different between the two forest types with only one shade‐intolerant seedling in the plantation compared to 23 seedlings belonging to two species in the natural forest. In the natural forest 11 species of tree seedling were found, while in the plantation only five were found, and the seedling density was only one third of that in the natural forest. Across plots in both forests, understorey plant richness and diversity were negatively correlated with direct sunlight but not indirect sunlight, possibly because direct light plays a more important role in understorey plant growth. Conclusions: We report lower species and functional diversity and higher light availability in a natural hardwood forest than an adjacent 30‐yr C. japonica plantation, possibly due to the increased dominance of shade‐intolerant species associated with higher light availability. To maintain plant diversity, management efforts must be made to prevent localized losses of shade‐adapted understorey plants

    Mesozoic-Cenozoic mafic magmatism in Sanandaj-Sirjan Zone, Zagros Orogen (Western Iran): geochemical and isotopic inferences from Middle Jurassic and Late Eocene gabbros

    Get PDF
    One of the consequences of Neo-Tethys ocean subduction beneath the Central Iranian Micro-continent (CIMC) is the development of rare gabbroic intrusions in the Malayer-Boroujerd Plutonic Complex (MBPC) located in the Sanandaj-Sirjan Zone (SaSZ) of the Zagros Orogenic belt. The MBPC is a suite of extensive felsic and lesser mafic magmatic products in the northern SaSZ with geochemical signatures of arc-like magmatism during the Middle Jurassic (Ghorveh-Aligudarz arc) and intraplate type in the Late Eocene. Middle Jurassic gabbros (non-cumulate and cumulate) have low-Ti concentrations (< 1 wt. %) and quite uniform isotopic compositions (initial 87Sr/86Sr: 0.7035‒0.70593 and ΔNd(t): - 6.18‒-0.7), enriched LILE relative to HFSE, variable fractionation between the LREE and HREE ((La/Yb)cn: 2.27‒7.45) and both negative to positive Eu anomalies. These distinctive features of arc-type magmatism are consistent with a subduction-modified mantle source for these rocks. Trace element and REE models indicate ~ 15% melting of a metasomatized amphibole-bearing garnet-spinel lherzolite (garnet:spinel ~ 7:3) in the sub-arc mantle wedge. The cumulate gabbros and non-cumulates belong to common liquid line of descent, with complementary trace element patterns. Much of the variation between samples can be modeled by fractional crystallization (FC) of a common parent; only one cumulate gabbro from this suite exhibits isotopic evidence of contamination, probably by Rb-depleted crustal materials. The Late Eocene gabbros have relatively high Ti (>1 wt. %) and display isotopically depleted Sr-Nd values (initial 87Sr/86Sr: 0.7044-0.7087, ΔNd(t): 1.9-+3.2, barring one crustally contaminated sample). OIB-like trace element characteristics such as enriched HFSE, and only minor enrichment of LILE and LREE, reflect a within-plate character and asthenospheric source. Trace element modeling indicates small degree melting (fmelting: 0.05) of upper mantle lherzolite (garnet:spinel ~ 3:1) followed by higher degree melting (fmelting: 0.15) at shallower depths (garnet:spinel ~4.5:2). The Eocene parental magma underwent FC of olivine and clinopyroxene. We propose that Eocene asthenospheric upwelling was triggered by slab tearing in response to slab-rollback, which is elsewhere reported to have triggered a 'flareup' of extension-related magmatism across Iran. Three stages of tectonomagmatic evolution in the Ghorveh-Aligudarz arc segment of the N-SaSZ are represented by: 1) arc-like magmatism during active subduction of the Neo-Tethys seaway at Middle Jurassic, 2) magmatic quiescence during an interval of shallow-angle or highly oblique subduction during the Cretaceous‒Paleocene, and 3) asthenosphere melting during slab tearing shortly before the onset of the Arabia-Eurasia collision

    Statistical Attention Localization (SAL): Methodology and Application to Object Classification

    Full text link
    A statistical attention localization (SAL) method is proposed to facilitate the object classification task in this work. SAL consists of three steps: 1) preliminary attention window selection via decision statistics, 2) attention map refinement, and 3) rectangular attention region finalization. SAL computes soft-decision scores of local squared windows and uses them to identify salient regions in Step 1. To accommodate object of various sizes and shapes, SAL refines the preliminary result and obtain an attention map of more flexible shape in Step 2. Finally, SAL yields a rectangular attention region using the refined attention map and bounding box regularization in Step 3. As an application, we adopt E-PixelHop, which is an object classification solution based on successive subspace learning (SSL), as the baseline. We apply SAL so as to obtain a cropped-out and resized attention region as an alternative input. Classification results of the whole image as well as the attention region are ensembled to achieve the highest classification accuracy. Experiments on the CIFAR-10 dataset are given to demonstrate the advantage of the SAL-assisted object classification method.Comment: 11 pages, 9 figure
    • 

    corecore