166 research outputs found

    Cross Subkey Side Channel Analysis Based on Small Samples

    Get PDF
    The majority of recently demonstrated Deep-Learning Side-Channel Analysis (DLSCA) use neural networks trained on a segment of traces containing operations only related to the target subkey. However, when the size of the training set is limited, as in this paper with only 5K power traces, the deep learning (DL) model cannot effectively learn the internal features of the data due to insufficient training data. In this paper, we propose a cross-subkey training approach that acts as a trace augmentation. We train deep-learning models not only on a segment of traces containing the SBox operation of the target subkey of AES-128 but also on segments for other 15 subkeys. Experimental results show that the accuracy of the subkey combination training model is 28.20% higher than that of the individual subkey training model on traces captured in the microcontroller implementation of the STM32F3 with AES-128. And validation is performed on two additional publicly available datasets. At the same time, the number of traces that need to be captured when the model is trained is greatly reduced, demonstrating the effectiveness and practicality of the method

    Multi-Leak Deep-Learning Side-Channel Analysis

    Get PDF
    Deep Learning Side-Channel Attacks (DLSCAs) have become a realistic threat to implementations of cryptographic algorithms, such as Advanced Encryption Standard (AES). By utilizing deep-learning models to analyze side-channel measurements, the attacker is able to derive the secret key of the cryptographic alrgorithm. However, when traces have multiple leakage intervals for a specific attack point, the majority of existing works train neural networks on these traces directly, without a appropriate preprocess step for each leakage interval. This degenerates the quality of profiling traces due to the noise and non-primary components. In this paper, we first divide the multi-leaky traces into leakage intervals and train models on different intervals separately. Afterwards, we concatenate these neural networks to build the final network, which is called multi-input model. We test the proposed multi-input model on traces captured from STM32F3 microcontroller implementations of AES-128 and show a 2-fold improvement over the previous single-input attacks

    Low-carbon developments in Northeast China: Evidence from cities

    Get PDF
    Cities are a major source of energy use and greenhouse gases emissions, as well as being at the core of the climate change mitigation. With the Revitalizing Old Industrial Base of Northeast China strategy, Northeast China has been a typical developing region with rapid industrialization and urbanization accompanied by substantial energy consumption and carbon emissions. Therefore, northeastern Chinese cities should play an important role in regional low-carbon developments. This study presents several improvements to previous method to improve the accuracy of the results. Using the modified method, for the first time, we compile carbon emission inventories for 30 cities in Northeast China based on fossil fuel combustion and industrial processes. The results indicate that Anshan emitted the most carbon emissions annually, followed by Benxi and the vice-provincial cities (including Changchun, Shenyang, Dalian and Harbin). In 2012, the total carbon emissions of the 30 cities amounted to 973.95 million tonnes, accounting for 9.71% and 2.75% of national and global carbon emissions, respectively. Most of the CO2 emissions of these cities were from the ‘nonmetal and metal industry’ and ‘energy production and supply’. Raw coal was the primary source of carbon emissions in Northeast China, and industrial processes also played a significant role in determining the carbon emissions. Additionally, both the average per capita carbon emissions and carbon emission intensity in the 30 cities were higher than the national levels. According to the differences in carbon emissions characteristics, we present several policy recommendations for carbon mitigation for northeastern Chinese cities. This study provides consistent and comparable spatial-temporal city-level emission database for further research on relationships between economic development and environmental protection in Northeast China. Simultaneously, this study provides practical reference values for other developing regions throughout the world to create low-carbon road maps

    Cold quark matter in a quasiparticle model: thermodynamic consistency and stellar properties

    Full text link
    The strong coupling in the effective quark mass was usually taken as a constant in a quasiparticle model while it is, in fact, running with an energy scale. With a running coupling, however, the thermodynamic inconsistency problem appears in the conventional treatment. We show that the renormalization subtraction point should be taken as a function of the summation of the biquadratic chemical potentials if the quark's current masses vanish, in order to ensure full thermodynamic consistency. Taking the simplest form, we study the properties of up-down (udud) quark matter, and confirm that the revised quasiparticle model fulfills the quantitative criteria for thermodynamic consistency. Moreover, we find that the maximum mass of an udud quark star can be larger than two times the solar mass, reaching up to 2.31M2.31M_{\odot}, for reasonable model parameters. However, to further satisfy the upper limit of tidal deformability Λ~1.4580\tilde{\Lambda}_{1.4}\leq 580 observed in the event GW170817, the maximum mass of an udud quark star can only be as large as 2.08M2.08M_{\odot}, namely Mmax2.08MM_{\text{max}}\lesssim2.08M_{\odot}. In other words, our results indicate that the measured tidal deformability for event GW170817 places an upper bound on the maximum mass of udud quark stars, but which does not rule out the possibility of the existence of quark stars composed of udud quark matter, with a mass of about two times the solar mass.Comment: 10 pages, 8 figure

    Uloga deplecije glutationa u aktivaciji Nrf2/ARE deltametrinom u štakorskim PC12-stanicama feokromocitoma

    Get PDF
    Transcription factor NF-E2-related factor 2 (Nrf2) is important for cell protection against chemical-induced oxidative stress. Previously, we have reported that in PC12 cells, Nrf2 can be triggered by deltamethrin (DM), a commonly used pyrethroid insecticide. Molecular mechanisms behind Nrf2 activation by DM are still unclear. Here we studied the effects of cell glutathione (GSH) depletion on Nrf2 activation by DM. We found that DM enhanced Nrf2 expression at the mRNA and protein levels and increased nuclear Nrf2 levels. Activation of Nrf2 was associated with activation of its downstream targets, such as heme oxygenase-1 (HO-1) and glutamate cysteine ligase catalytic subunit (GCLC). In contrast, DL-buthionine-[S,R]- sulfoximine (BSO), a known GSH-depleting agent, did not increase Nrf2 protein expression or cause its nuclear accumulation. However, pre-treatment with BSO triggered mRNA expression of HO-1 and GCLC. Furthermore, BSO pre-treatment suppressed DM-induced Nrf2 upregulation and activation and lowered mRNA expression of HO-1 and GCLC upon DM treatment. These data demonstrate that GSH depletion is not necessary for the activation of Nrf2/ARE by DM in PC12 cells, and that GCLC and HO-1 expression can increase through other signalling pathways.Transkripcijski čimbenik 2 povezan s NF-E2 (Nrf2) važan je za zaštitu stanice od oksidacijskog stresa uzrokovanog kemijskim spojevima. U prijašnjem smo istraživanju utvrdili da često rabljeni piretroidni insekticid deltametrin aktivira Nrf2 u štakorskim PC12-stanicama feokromocitoma. Još međutim nisu jasni molekularni mehanizmi te aktivacije. U ovome smo istraživanju željeli utvrditi ulogu deplecije staničnoga glutationa (GSH) u aktivaciji Nrf2 od strane DM-a. DM je pojačao ekspresiju Nrf2 u mRNA te povisio razinu proteina i razinu Nrf2 u jezgri. Aktivacija Nrf2 bila je povezana s nizvodnom aktivacijom hemoksigenaze 1 (HO-1) i katalitičke podjedinice glutamat cistein ligaze (GCLC). DL-butionin-[S,R]-sulfoksimin (BSO), za koji se zna da dovodi do deplecije GSH, nije međutim povećao ekspresiju Nrf2-proteina niti doveo do njegova nakupljanja u staničnoj jezgri. Prethodna primjena BSO aktivirala je međutim ekspresiju HO-1 i GCLC u mRNA. Usto je suprimirala djelovanje DM-a na aktivaciju i regulaciju Nrf2 te smanjila ekspresiju HO-1 i GCLC u mRNA nakon primjene DM-a. Ova saznanja govore da deplecija GSH nije nuždan mehanizam za aktivaciju Nrf2/ARE od strane DM-a u PC12-stanica te da do povećane ekspresije GCLC i HO-1 može doći drugim signalnim putovima

    Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment

    Get PDF
    CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats-associated protein 9) is a potent technology for gene-editing. Owing to its high specificity and efficiency, CRISPR/Cas9 is extensity used for human diseases treatment, especially for cancer, which involves multiple genetic alterations. Different concepts of cancer treatment by CRISPR/Cas9 are established. However, significant challenges remain for its clinical applications. The greatest challenge for CRISPR/Cas9 therapy is how to safely and efficiently deliver it to target sites in vivo. Nanotechnology has greatly contributed to cancer drug delivery. Here, we present the action mechanisms of CRISPR/Cas9, its application in cancer therapy and especially focus on the nanotechnology-based delivery of CRISPR/Cas9 for cancer gene editing and immunotherapy to pave the way for its clinical translation. We detail the difficult barriers for CRISIR/Cas9 delivery in vivo and discuss the relative solutions for encapsulation, target delivery, controlled release, cellular internalization, and endosomal escape.</p

    Epimorphin Regulates Bile Duct Formation via Effects on Mitosis Orientation in Rat Liver Epithelial Stem-Like Cells

    Get PDF
    Understanding how hepatic precursor cells can generate differentiated bile ducts is crucial for studies on epithelial morphogenesis and for development of cell therapies for hepatobiliary diseases. Epimorphin (EPM) is a key morphogen for duct morphogenesis in various epithelial organs. The role of EPM in bile duct formation (DF) from hepatic precursor cells, however, is not known. To address this issue, we used WB-F344 rat epithelial stem-like cells as model for bile duct formation. A micropattern and a uniaxial static stretch device was used to investigate the effects of EPM and stress fiber bundles on the mitosis orientation (MO) of WB cells. Immunohistochemistry of liver tissue sections demonstrated high EPM expression around bile ducts in vivo. In vitro, recombinant EPM selectively induced DF through upregulation of CK19 expression and suppression of HNF3α and HNF6, with no effects on other hepatocytic genes investigated. Our data provide evidence that EPM guides MO of WB-F344 cells via effects on stress fiber bundles and focal adhesion assembly, as supported by blockade EPM, β1 integrin, and F-actin assembly. These blockers can also inhibit EPM-induced DF. These results demonstrate a new biophysical action of EPM in bile duct formation, during which determination of MO plays a crucial role

    Nanoarchitectonic Engineering of Thermal-Responsive Magnetic Nanorobot Collectives for Intracranial Aneurysm Therapy

    Get PDF
    Stent-assisted coiling is a main treatment modality for intracranial aneurysms (IAs) in clinics, but critical challenges remain to be overcome, such as exogenous implant-induced stenosis and reliance on antiplatelet agents. Herein, we report an endovascular approach for IA therapy without stent grafting or microcatheter shaping, enabled by active delivery of thrombin (Th) to target aneurysms using innovative phase-change material (PCM)-coated magnetite-thrombin (Fe3O4-Th@PCM) FTP nanorobots. The nanorobots are controlled by an integrated actuation system of dynamic torque-force hybrid magnetic fields. With robust intravascular navigation guided by real-time ultrasound imaging, nanorobotic collectives can effectively accumulate and retain in model aneurysms constructed in vivo, followed by controlled release of the encapsulated Th for rapid occlusion of the aneurysm upon melting the protective PCM (thermally responsive in a tunable manner) through focused magnetic hyperthermia. Complete and stable aneurysm embolization was confirmed by postoperative examination and 2-week postembolization follow-up using digital subtraction angiography (DSA), contrast-enhanced ultrasound (CEUS) and histological analysis. The safety of the embolization therapy was assessed through biocompatibility evaluation and histopathology assays. Our strategy, seamlessly integrating secure drug packaging, agile magnetic actuation and clinical interventional imaging, avoids possible exogenous implant rejection, circumvents cumbersome microcatheter shaping, and offers a promising option for IA therapy
    corecore