626 research outputs found

    Differentially Private Data Releasing for Smooth Queries with Synthetic Database Output

    Full text link
    We consider accurately answering smooth queries while preserving differential privacy. A query is said to be KK-smooth if it is specified by a function defined on [1,1]d[-1,1]^d whose partial derivatives up to order KK are all bounded. We develop an ϵ\epsilon-differentially private mechanism for the class of KK-smooth queries. The major advantage of the algorithm is that it outputs a synthetic database. In real applications, a synthetic database output is appealing. Our mechanism achieves an accuracy of O(nK2d+K/ϵ)O (n^{-\frac{K}{2d+K}}/\epsilon ), and runs in polynomial time. We also generalize the mechanism to preserve (ϵ,δ)(\epsilon, \delta)-differential privacy with slightly improved accuracy. Extensive experiments on benchmark datasets demonstrate that the mechanisms have good accuracy and are efficient

    Human Pose Estimation using Global and Local Normalization

    Full text link
    In this paper, we address the problem of estimating the positions of human joints, i.e., articulated pose estimation. Recent state-of-the-art solutions model two key issues, joint detection and spatial configuration refinement, together using convolutional neural networks. Our work mainly focuses on spatial configuration refinement by reducing variations of human poses statistically, which is motivated by the observation that the scattered distribution of the relative locations of joints e.g., the left wrist is distributed nearly uniformly in a circular area around the left shoulder) makes the learning of convolutional spatial models hard. We present a two-stage normalization scheme, human body normalization and limb normalization, to make the distribution of the relative joint locations compact, resulting in easier learning of convolutional spatial models and more accurate pose estimation. In addition, our empirical results show that incorporating multi-scale supervision and multi-scale fusion into the joint detection network is beneficial. Experiment results demonstrate that our method consistently outperforms state-of-the-art methods on the benchmarks.Comment: ICCV201

    Spatial spectrum and energy efficiency of random cellular networks

    Get PDF
    It is a great challenge to evaluate the network performance of cellular mobile communication systems. In this paper, we propose new spatial spectrum and energy efficiency models for Poisson-Voronoi tessellation (PVT) random cellular networks. To evaluate the user access the network, a Markov chain based wireless channel access model is first proposed for PVT random cellular networks. On that basis, the outage probability and blocking probability of PVT random cellular networks are derived, which can be computed numerically. Furthermore, taking into account the call arrival rate, the path loss exponent and the base station (BS) density in random cellular networks, spatial spectrum and energy efficiency models are proposed and analyzed for PVT random cellular networks. Numerical simulations are conducted to evaluate the network spectrum and energy efficiency in PVT random cellular networks.Comment: appears in IEEE Transactions on Communications, April, 201

    Artificial Neural Networks in Production Scheduling and Yield Prediction of Semiconductor Wafer Fabrication System

    Get PDF
    With the development of artificial intelligence, the artificial neural networks (ANN) are widely used in the control, decision‐making and prediction of complex discrete event manufacturing systems. Wafer fabrication is one of the most complicated and high competence manufacturing phases. The production scheduling and yield prediction are two critical issues in the operation of semiconductor wafer fabrication system (SWFS). This chapter proposed two fuzzy neural networks for the production rescheduling strategy decision and the die yield prediction. Firstly, a fuzzy neural network (FNN)‐based rescheduling decision model is implemented, which can rapidly choose an optimized rescheduling strategy to schedule the semiconductor wafer fabrication lines according to the current system disturbances. The experimental results demonstrate the effectiveness of proposed FNN‐based rescheduling decision mechanism approach over the alternatives (back‐propagation neural network and Multivariate regression). Secondly, a novel fuzzy neural network‐based yield prediction model is proposed to improve prediction accuracy of die yield in which the impact factors of yield and critical electrical test parameters are considered simultaneously and are taken as independent variables. The comparison experiment verifies the proposed yield prediction method improves on three traditional yield prediction methods with respect to prediction accuracy

    New superconvergent structures developed from the finite volume element method in 1D

    Full text link
    New superconvergent structures are introduced by the finite volume element method (FVEM), which allow us to choose the superconvergent points freely. The general orthogonal condition and the modified M-decomposition (MMD) technique are established to prove the superconvergence properties of the new structures. In addition, the relationships between the orthogonal condition and the convergence properties for the FVE schemes are carried out in Table 1. Numerical results are given to illustrate the theoretical results

    Utilizing Multiple Inputs Autoregressive Models for Bearing Remaining Useful Life Prediction

    Full text link
    Accurate prediction of the Remaining Useful Life (RUL) of rolling bearings is crucial in industrial production, yet existing models often struggle with limited generalization capabilities due to their inability to fully process all vibration signal patterns. We introduce a novel multi-input autoregressive model to address this challenge in RUL prediction for bearings. Our approach uniquely integrates vibration signals with previously predicted Health Indicator (HI) values, employing feature fusion to output current window HI values. Through autoregressive iterations, the model attains a global receptive field, effectively overcoming the limitations in generalization. Furthermore, we innovatively incorporate a segmentation method and multiple training iterations to mitigate error accumulation in autoregressive models. Empirical evaluation on the PMH2012 dataset demonstrates that our model, compared to other backbone networks using similar autoregressive approaches, achieves significantly lower Root Mean Square Error (RMSE) and Score. Notably, it outperforms traditional autoregressive models that use label values as inputs and non-autoregressive networks, showing superior generalization abilities with a marked lead in RMSE and Score metrics
    corecore