1,752 research outputs found

    Ordered Self-Assembling of Tetrahedral Oxide Nanocrystals

    Get PDF
    ©1997 The American Physical Society. The electronic version of this article is the complete one and can be found online at: http://link.aps.org/doi/10.1103/PhysRevLett.79.2570DOI: 10.1103/PhysRevLett.79.2570Self-assembling of size, shape, and phase controlled nanocrystals into superlattices with translational and even orientational ordering is a new approach for engineering nanocrystal materials and devices. High purity tetrahedral nanocrystals of CoO, with edge lengths of 4.4±0.2 nm, were synthesized and separated from Co nanocrystals, using a novel magnetic field phase-selection technique. Self-assembling of the faceted CoO nanocrystals forms ordered superlattices, the structures of which are determined

    Secure Beamforming For MIMO Broadcasting With Wireless Information And Power Transfer

    Full text link
    This paper considers a basic MIMO information-energy (I-E) broadcast system, where a multi-antenna transmitter transmits information and energy simultaneously to a multi-antenna information receiver and a dual-functional multi-antenna energy receiver which is also capable of decoding information. Due to the open nature of wireless medium and the dual purpose of information and energy transmission, secure information transmission while ensuring efficient energy harvesting is a critical issue for such a broadcast system. Assuming that physical layer security techniques are applied to the system to ensure secure transmission from the transmitter to the information receiver, we study beamforming design to maximize the achievable secrecy rate subject to a total power constraint and an energy harvesting constraint. First, based on semidefinite relaxation, we propose global optimal solutions to the secrecy rate maximization (SRM) problem in the single-stream case and a specific full-stream case where the difference of Gram matrices of the channel matrices is positive semidefinite. Then, we propose a simple iterative algorithm named inexact block coordinate descent (IBCD) algorithm to tackle the SRM problem of general case with arbitrary number of streams. We proves that the IBCD algorithm can monotonically converge to a Karush-Kuhn-Tucker (KKT) solution to the SRM problem. Furthermore, we extend the IBCD algorithm to the joint beamforming and artificial noise design problem. Finally, simulations are performed to validate the performance of the proposed beamforming algorithms.Comment: Submitted to journal for possible publication. First submission to arXiv Mar. 14 201
    • …
    corecore