174 research outputs found

    DsMtGCN: A Direction-sensitive Multi-task framework for Knowledge Graph Completion

    Full text link
    To solve the inherent incompleteness of knowledge graphs (KGs), numbers of knowledge graph completion (KGC) models have been proposed to predict missing links from known triples. Among those, several works have achieved more advanced results via exploiting the structure information on KGs with Graph Convolutional Networks (GCN). However, we observe that entity embeddings aggregated from neighbors in different directions are just simply averaged to complete single-tasks by existing GCN based models, ignoring the specific requirements of forward and backward sub-tasks. In this paper, we propose a Direction-sensitive Multi-task GCN (DsMtGCN) to make full use of the direction information, the multi-head self-attention is applied to specifically combine embeddings in different directions based on various entities and sub-tasks, the geometric constraints are imposed to adjust the distribution of embeddings, and the traditional binary cross-entropy loss is modified to reflect the triple uncertainty. Moreover, the competitive experiments results on several benchmark datasets verify the effectiveness of our model

    Transparent Assessment of the Supervision Information in China's Food Safety: A Fuzzy-ANP Comprehensive Evaluation Method

    Get PDF
    Improving transparency of food safety supervision information can reduce the occurrence of information asymmetry, decrease food safety incidents, and promote socially joint regulation for food safety. In this study, an index system of food safety supervision information transparency (FSSIT) is constructed using the fuzzy-ANP comprehensive evaluation model. Using this system, the FSSIT in China is evaluated. A total of 1651 questionnaires containing 139525 data are collected from food and drug administration (FDA), consumer association (CA), and media at the central, provincial, prefectural, and county levels. Empirical results indicate that the FSSIT achieves a qualified level; however, the works of FDA, CA, and media still present deficiencies. The information transparency in the entirety presents deficiencies and gradually declines when that in the administrative level decreases. The economic development level indirectly determines the transparency level, and the transparency level does not conform to China's current economic development level

    Contextual Dictionary Lookup for Knowledge Graph Completion

    Full text link
    Knowledge graph completion (KGC) aims to solve the incompleteness of knowledge graphs (KGs) by predicting missing links from known triples, numbers of knowledge graph embedding (KGE) models have been proposed to perform KGC by learning embeddings. Nevertheless, most existing embedding models map each relation into a unique vector, overlooking the specific fine-grained semantics of them under different entities. Additionally, the few available fine-grained semantic models rely on clustering algorithms, resulting in limited performance and applicability due to the cumbersome two-stage training process. In this paper, we present a novel method utilizing contextual dictionary lookup, enabling conventional embedding models to learn fine-grained semantics of relations in an end-to-end manner. More specifically, we represent each relation using a dictionary that contains multiple latent semantics. The composition of a given entity and the dictionary's central semantics serves as the context for generating a lookup, thus determining the fine-grained semantics of the relation adaptively. The proposed loss function optimizes both the central and fine-grained semantics simultaneously to ensure their semantic consistency. Besides, we introduce two metrics to assess the validity and accuracy of the dictionary lookup operation. We extend several KGE models with the method, resulting in substantial performance improvements on widely-used benchmark datasets

    A cloud-based remote sensing data production system

    Get PDF
    The data processing capability of existing remote sensing system has not kept pace with the amount of data typically received and need to be processed. Existing product services are not capable of providing users with a variety of remote sensing data sources for selection, either. Therefore, in this paper, we present a product generation programme using multisource remote sensing data, across distributed data centers in a cloud environment, so as to compensate for the low productive efficiency, less types and simple services of the existing system. The programme adopts ā€œmasterā€“slaveā€ architecture. Specifically, the master center is mainly responsible for the production order receiving and parsing, as well as task and data scheduling, results feedback, and so on; the slave centers are the distributed remote sensing data centers, which storage one or more types of remote sensing data, and mainly responsible for production task execution. In general, each production task only runs on one data center, and the data scheduling among centers adopts a ā€œminimum data transferringā€ strategy. The logical workflow of each production task is organized based on knowledge base, and then turned into the actual executed workflow by Kepler. In addition, the scheduling strategy of each production task mainly depends on the Ganglia monitoring results, thus the computing resources can be allocated or expanded adaptively. Finally, we evaluated the proposed programme using test experiments performed at global, regional and local areas, and the results showed that our proposed cloud-based remote sensing production system could deal with massive remote sensing data and different products generating, as well as on-demand remote sensing computing and information service

    Robust Quadratic Regression and Its Application to Energy-Growth Consumption Problem

    Get PDF
    We propose a robust quadratic regression model to handle the statistics inaccuracy. Unlike the traditional robust statistic approaches that mainly focus on eliminating the effect of outliers, the proposed model employs the recently developed robust optimization methodology and tries to minimize the worst-case residual errors. First, we give a solvable equivalent semidefinite programming for the robust least square model with ball uncertainty set. Then the result is generalized to robust models under l1- and lāˆž-norm critera with general ellipsoid uncertainty sets. In addition, we establish a robust regression model for per capital GDP and energy consumption in the energy-growth problem under the conservation hypothesis. Finally, numerical experiments are carried out to verify the effectiveness of the proposed models and demonstrate the effect of the uncertainty perturbation on the robust models
    • ā€¦
    corecore