12,068 research outputs found

    Nonequilibrium current driven by a step voltage pulse: an exact solution

    Full text link
    One of the most important problems in nanoelectronic device theory is to estimate how fast or how slow a quantum device can turn on/off a current. For an arbitrary noninteracting phase-coherent device scattering region connected to the outside world by leads, we have derived an exact solution for the nonequilibrium, nonlinear, and time-dependent current driven by both up- and down-step pulsed voltages. Our analysis is based on the Keldysh nonequilibrium Green's functions formalism where the electronic structure of the leads as well as the scattering region are treated on an equal footing. A model calculation for a quantum dot with a Lorentzian linewidth function shows that the time-dependent current dynamics display interesting finite-bandwidth effects not captured by the commonly used wideband approximation

    Structure and Dielectric Properties of Amorphous High-kappa Oxides: HfO2, ZrO2 and their alloys

    Get PDF
    High-κ\kappa metal oxides are a class of materials playing an increasingly important role in modern device physics and technology. Here we report theoretical investigations of the properties of structural and lattice dielectric constants of bulk amorphous metal oxides by a combined approach of classical molecular dynamics (MD) - for structure evolution, and quantum mechanical first principles density function theory (DFT) - for electronic structure analysis. Using classical MD based on the Born-Mayer-Buckingham potential function within a melt and quench scheme, amorphous structures of high-κ\kappa metal oxides Hf1−x_{1-x}Zrx_xO2_2 with different values of the concentration xx, are generated. The coordination numbers and the radial distribution functions of the structures are in good agreement with the corresponding experimental data. We then calculate the lattice dielectric constants of the materials from quantum mechanical first principles, and the values averaged over an ensemble of samples agree well with the available experimental data, and are very close to the dielectric constants of their cubic form.Comment: 5 pages, 4 figure

    Impact of Edge States on Device Performance of Phosphorene Heterojunction Tunneling Field Effect Transistors

    Get PDF
    Black phosphorus (BP) tunneling transistors (TFETs) using heterojunction (He) are investigated by atomistic quantum transport simulations. It is observed that edge states have a great impact on transport characteristics of BP He-TFETs, which result in the potential pinning effect and deteriorate the gate control. While, on-state current can be effectively enhanced by using hydrogen to saturate the edge dangling bonds in BP He-TFETs, in which edge states are quenched. By extending layered BP with a smaller band gap to the channel region and modulating the BP thickness, device performance of BP He-TFETs can be further optimized and fulfill the requirements of the international technology road-map for semiconductors (ITRS) 2013 for low power applications. In 15 nm 3L-1L and 4L-1L BP He-TFETs along armchair direction on-state current can reach above 103^3 μ\muA/μ\mum with the fixed off-state current of 10 pA/μpA/\mum. It is also found that ambipolar effect can be effectively suppressed in BP He-TFETs.Comment: 12 pages, 5 figure
    • …
    corecore