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High-« metal oxides are a class of materials playing an increasingly important role in modern device physics
and technology. Here we report theoretical investigations of the properties of structural and lattice dielectric
constants of bulk amorphous metal oxides by a combined approach of classical molecular dynamics (MD),
for structure evolution, and quantum mechanical first-principles density function theory (DFT), for electronic
structure analysis. Using classical MD based on the Born-Mayer-Buckingham potential function within a melt
and quench scheme, amorphous structures of high-« metal oxides Hf|_,Zr,O, with different values of the
concentration x are generated. The coordination numbers and the radial distribution functions of the structures
are in good agreement with the corresponding experimental data. We then calculate the lattice dielectric constants
of the materials from quantum mechanical first principles, and the values averaged over an ensemble of samples
agree well with the available experimental data and are very close to the dielectric constants of their cubic form.
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I. INTRODUCTION

In the complementary metal oxide semiconductor (CMOS)
devices, SiO; has been the first and only choice of gate oxide
material for a long time. However, with the continued decrease
in the feature size of the CMOS devices, SiO, is no longer
reliable as a gate oxide due to the high tunneling leakage
current through it at small thickness. Major research efforts
are continuously being carried out in search of a suitable
replacement for the SiO; as a gate material.! Several promising
candidates are metal oxides such as HfO,,>? Zr0,,> and
Al,03.,° all of which have a dielectric constant x of high
value. High-x metal oxides in their amorphous (a-) form
are more preferable as a gate oxide than their crystalline
form because of several important advantages they provide:
(i) isotropic physical properties; (ii) no crystalline domain
boundary, which leads to less defects at the interface with the
Si substrate; and (iii) good compatibility with the conventional
CMOS fabrication process. Some alloy structures of these
high-x metal oxides are also being studied extensively’~!2
and, in fact, a Hf-based alloy material has already been in
its third generation of production as a gate oxide in the
semiconductor industry and further improvements of thermal
stability, dielectric constant, and material preparations are
under way.%1°

In clear contrast to the abundance of experimental results
in the literature, theoretical studies of the structure and
dielectric properties of amorphous metal oxides and their
alloys are quite limited. One of the reasons is the difficulty
in generating reasonable and reliable amorphous structures
with the available theoretical methods. Experimentally, the
high-x materials are deposited on silicon substrate by va-
por deposition (as-deposited films) followed by annealing
processes at around 1000 K.'>'* Simulating the deposition
process and the resulting amorphous high-« material structures
by molecular dynamics (MD) is extremely time-consuming
because the deposition rate must be controlled close to
the experimental value, which is usually very low. The as-
deposited a-HfO, and a-Al,O; films have been generated
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by kinetic Monte Carlo (KMC) methods®!®> with certain
assumptions, such as the atoms are kept fixed on predetermined
crystal sites and less important dynamics processes of atomic
motion are omitted. Both MD and KMC are useful for the
simulation of the initial atomic layer deposition processes
of the amorphous film growth. To generate bulk amorphous
structures, ab initio MD simulations can be used in a
melt and quench scheme, a-HfO,,>71¢ a-Zr0,,>>!7 and their
silicates” !> have been successfully simulated this way. The
activation-relaxation technique is another method to generate
structures of continuous disordered systems'® and has been
applied to generate a-ZrO, structures.'” In this method, one
optimizes the structures many times to determine a local energy
minima (in configurational space) using a force field which
can be calculated from quantum mechanical first principles or
described by an empirical potential function. For the former
the calculation cost is high while for the latter a reliable
potential function is required. Recently, several extended-
Tersoff potentials'® were proposed for certain metal oxides and
applied to generate their amorphous structures from classical
MD.11:20

Amorphous structures are long range disordered systems
which typically require much larger than ~100 atoms to
simulate. Another issue, perhaps more difficult to deal with, is
the simulation time scale that is needed for the atoms to evolve
into the amorphous structure. While ab initio methods have
simulated up to picoseconds time scale, one certainly wishes
to investigate the structures and electronic properties of metal
oxides at much larger time scales and much larger sizes in order
to reveal the long time limit of the structural evolution and the
physical properties of the resulting amorphous material. It is
the purpose of this work to report such an investigation.

In particular, we calculate the lattice dielectric constants
of bulk amorphous metal oxides by a combined approach of
classical MD, for structure evolution, and quantum mechanical
first-principles DFT, for electronic structure analysis. We
overcome the size and time scale difficulty by classical
MD simulations in a melt and quench scheme and generate
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amorphous structures of HfO,, ZrO,, and their alloys in the
form of Hf|_,Zr, O, with different values of the concentration
x (0 < x < 1). The classical MD is based on the interatomic
Born-Mayer-Buckingham potential function.?! This potential
has been developed over many years and extensively applied to
investigate the growth processes of Y03, ZrO,, and Mg-Al-O
thin films.?>"? Here we show that high-« bulk materials of
amorphous nature can be generated quite efficiently using
this particular potential function. Detailed analysis of the
amorphous structures is carried out including the coordination
number, the radial distribution function, and the potential
energy per atom of the structures. Using the atomic structures
generated this way, we carry out first-principles density
functional theory (DFT) calculations of the lattice dielectric
constant and the results are averaged over ten independent
samples for each material. The sample averaged dielectric
constants show very good agreement with the corresponding
experimental data.

The combined approach of classical MD and DFT is an
excellent way to deal with the problem of large sizes and large
time scales required by the materials physics of metal oxides.
Several advantages can be summarized as follows:

(i) Classical MD is inexpensive for simulating systems
containing large number of atoms, which is important for a
proper characterization of amorphous structures having long
range disorders; here we have gone up to 768 atoms although
several thousand atoms can be easily handled.

(i1) Inthe melt and quench scheme a much longer relaxation
time scale, here to several nanoseconds, can be evolved
after the material is heated above the melting point. Such
a long time scale is important for erasing the memory
of the initial structure; thereby the final outcome becomes
independent of the initial conditions. Here we show that the
same kind of amorphous structure is obtained by evolving from
different initial structures including from a completely random
structure.

(iii) Since the calculated physical properties of amorphous
material should be averaged over an ensemble of samples due
to the randomness of the structure, the combined classical-
quantum approach allows such a configurational average
to be done. Here we show that the calculated dielectric
constants of the metal oxides become spatially isotropic after
configurational averaging, but it is typically anisotropic if only
one sample is calculated.

The paper is organized as follows. In Sec. II we present the
classical MD method as employed in this work. In Sec. III we
discuss the structural properties of our simulated amorphous
structures and also present our results for the lattice dielectric
constants of these structures. Section IV concludes the paper.

II. METHODS

In this section we discuss the potential function used in
our classical MD simulations along with a short description
of the melt and quench scheme. In our MD method the
interactions between the atoms are described by the Born-
Mayer-Buckingham potential function?! as shown below:

Fij C iqi
V(r)erxp(——’>——6+4qi. (1)
1% rij TEQT;j
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TABLE 1. Parameters for Born-Mayer-Buckingham potential
function as obtained from Ref. 21.

Elements Charge A (eV) o (A) C
Hf +4 1454.6 0.350

Zr +4 1453.8 0.350 0
0 -2 227643 0.149 20.4

The cation-cation interactions are assumed to be purely
Coulombic; the parameters for 02--0%" interactions and
cation-anion interactions are presented in Table I. All the
parameters were obtained from Ref. 21. We employed
Wolf et al.’s method?’?® for the summation of the Coulomb
interaction term.

At the initial stage of the simulation, all the atoms are as-
signed velocities taken from a Maxwell’s distribution at room
temperature T,. The system is then heated up to a temperature
of T,, = 4000 K, well above the experimental melting point of
around 3000 K, followed by an evolution of 5 ns at the same
temperature, and then quenched back to room temperature 7.
During this melt and quench process, the motion of an atom
is governed by the Langevin equation m% =F —av+ Fg.
Actually, the temperature of the system is adjusted by resetting
the velocity of a randomly selected atom at the interval of At

according to the following expression:

vnew — (1 _ e)l/zv()ld + GI/ZUT”“TH(E), (2)

where 6 is a parameter between 0 and 1, and v’ %«(£) is a
velocity selected randomly from the Maxwell’s distribution at
temperature 7, or T, viaarandom number §. Velocity resetting
with Eq. (2) corresponds to taking the damping coefficient
o = m6/2At and the random force Fr = m6'/2v7 (£)/At in
the Langevin equation, where m is the atomic mass.?” Previous
calculations®” have shown that a value of 0.1 for 6 is reasonable
and appropriate. After the system is quenched to T, it is
allowed to evolve for 10 ps to calculate the radial distribution
function (RDF). Finally, the system is cooled down to 0 K
by a damping method,?' and thus concludes the procedure
for generating one amorphous structure of a particular metal
oxide.

In the simulations, the initial structure is modeled with
a 2 x 2 x 2 supercell of Hf,_,Zr,O, containing 96 atoms
or a 4 x 4 x 4 supercell containing 768 atoms. A periodic
boundary condition is imposed on the supercell. The initial
atomic configuration is the cubic crystalline form or is in
the form of a random structure by randomly placing the
constituents of the atoms (with the correct ratio) inside the
simulation box. These drastically different initial conditions
verify that the MD simulation time scales given above are
large enough since the same kind of final amorphous structure
(similar dielectric constant values and potential energy per
atom) is obtained.

III. RESULTS

A. Structure properties of Hf,_,Zr,0O,

To generate reliable amorphous structures it is important
to find the optimal density to use for the initial structure.
Hence, we first performed a series of independent simulations
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(a)

FIG. 1. (Color online) Structures of a-HfO, generated by classical
MD starting from the cubic crystal form of HfO, with different
lattice constants, corresponding to different densities. If the density
is high, the system recrystallizes to its cubic form (a) or any other
crystal form (b); if the density is low, the system tends to form a
disordered structure with big holes (d), whereas with a moderate
density of 7.97 g/cm® which corresponds to lattice constant of 5.6 A
for crystalline HfO,, a reasonable amorphous structure is generated
(c). Blue spheres represent Hf atoms; red spheres are for O atoms.

on the 96-atom supercell, starting from initial structures of
different lattice constants (i.e., different densities) of cubic
HfO, and ZrO, in the range from 4.5 to 6.0 A with an interval
of 0.1 A. We found that structures of amorphous nature [see
Fig. 1(c)] are obtained when the lattice constant is set to
5.6 A, which corresponds to a density of 7.97 g/cm? for HfO,
and 4.66 g/cm?® for ZrO,. If we start with a lattice constant
less than 5.5 A, the systems recrystallize to a cubic form
[Fig. 1(a)] or some other crystal form [Fig. 1(b)]; while with
a lattice constant greater than 5.8 A, the systems tend to form
disordered structures with big holes inside [Fig. 1(d)]. Our
optimized density values are close to those obtained previously
from ab initio calculations which were 8.6 g/cm’ for HfO,
(Ref. 20) and 4.86 g/cm® for ZrO,.'” Hence, the lattice
constant of 5.6 A is used as the initial condition (cubic form)
in subsequent melt and quench evolution to the amorphous
structures of Hf|_,Zr,O,.

To verify the generated amorphous structures we calculated
the coordination numbers and the radial distribution functions.
The results are presented in Fig. 2 for a-HfO, obtained from
the 768-atom supercell. From Fig. 2(a) we note that the three-
coordinated O atoms and six-coordinated Hf atoms dominate
the a-HfO, structures, which agrees with the known ab initio
results.”'® From Fig. 2(b) we find that the first peaks in the
Hf-O, O-0, and Hf-Hf radial distribution functions (RDFs)
are at 2.1, 2.8, and 3.6 A, respectively, which again compares
well with ab initio studies.”*° These comparisons indicate that
classical MD can reliably generate amorphous structures of
the metal oxides. Importantly, the efficiency of classical MD
allowed us to generate ensembles of amorphous samples of
Hf|_,Zr, O, for each given concentration x, which is essential
for statistical analysis of the dielectric properties (see below).
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FIG. 2. (Color online) (a) The coordination number and (b) the
radial distribution function (RDF) of the amorphous HfO, structure
obtained by classical MD simulations. Green, red, and blue lines in
(b) represent Hf-O, O-O, and Hf-Hf RDF, respectively. The results
were obtained from structures having 768 atoms.

For further analysis, we calculated the potential energy per
atom of the a-Hf,_,Zr,O, structures for different values of
x ranging from O to 1 with an interval of 0.125. For each
value of x, we generated ten different amorphous samples by
varying the initial conditions and then calculated the potential
energy per atom for each sample, which is presented in Fig. 3.
The results show that the potential energies of a-Hf,_,Zr, O,
structures as generated are located in the range from —36.88 to
—36.82 eV, which is areasonable and small spread, higher than
that of their crystal forms, and have similar potential energies
among themselves. We also generated a structure of a-HfO,
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FIG. 3. (Color online) Potential energies per atom for the amor-
phous structures of Hf,_,Zr, O, averaged over ten samples for each
value of x (solid red line). The potential energies per atom for each
individual sample are also shown in the figure (circles). The potential
energies of these samples reside in the range of —36.88 to —36.82 ¢V,
which is about 0.3 eV higher than that of the cubic HfO,. The very
small differences in the potential energies among the samples with
the same value of x confirm the reliability of the structures generated.
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starting from an initial system of 32 Hf atoms and 64 O atoms
placed randomly in a cubic simulation box. The calculated
potential energy of this particular a-HfO, structure comes to
—36.86 eV, which is in the same energy range of the a-HfO,
structures that were generated from the cubic HfO, initial
conditions. It is very satisfactory that the generated amorphous
structures are not dependent on the initial condition, indicating
that the simulation time scales presented above are adequate.

B. Dielectric properties of Hf;_,Zr, O,

A most important property of the high-« metal oxides is
their dielectric constant. In this section we present our calcula-
tions of the lattice dielectric constant (static) of the Hf | _, Zr, O,
amorphous structures generated in the last section. We found
that the electronic contribution to the dielectric constant is
substantially smaller than the lattice contribution and does
not change very much for different structures; hence it is not
discussed until when we calculate the total dielectric constant
to compare with the measured data (see below).

For the calculations of lattice dielectric constants we
employed density functional perturbation theory within a
projector augmented wave method in the generalized gradient
approximation (GGA) using Perdew-Burke-Ernzerhof (PBE)
parametrization as implemented in the VASP software.?> The
pseudopotentials for Hf and Zr included only the outermost
shells in the valence. An energy cutoff of 400 eV was used
in the plane wave by sampling the Brillouin zone only at
the I' point. The MD-generated amorphous structures were
not relaxed with DFT in VASP. This is reasonable since we
generated by MD a statistical ensemble of structures and
the values of the dielectric constant were averaged over the
ensemble. For each amorphous structure the dielectric constant
was calculated for an ensemble of ten different samples (the
96-atom super cell). The sample averaged values are presented
in Table II for a-HfO, and a-ZrO, along with the dielectric
constants for all three of their crystal forms. We notice that
the lattice dielectric constants of a-HfO, and a-ZrO, are close
to those of their cubic forms, suggesting that some cubic-
like short range order content may dominate the amorphous
structures. Indeed, recently experimental measurements' on
sputtering samples of a-HfO, revealed a cubiclike short
range coordination in the amorphous microstructure which
led to a high measured dielectric constant, ¥ ~ 30. Our
calculated lattice « (see Table II) is 24.52; when the electronic
contribution which we found to be around 4.4 was added, the
total k¥ &~ 28.9, which agrees quite well with the measured
data. To confirm that the « of a-HfO, being close to that of
the cubic HfO, is not due to the cubic initial condition of the
structure simulation, we evolved a single a-HfO, structure
from a completely random initial condition (see previous
section): its lattice dielectric constant was found to be 21.785,

TABLE II. Calculated lattice dielectric constants for HfO, and
ZrO; relative to the dielectric constants at vacuum.

Oxide Amorphous Cubic Monoclinic Tetragonal
HfO, 24.52 31.08 14.49 125.95
ZrO, 35.76 33.80 16.14 26.72

PHYSICAL REVIEW B 85, 224110 (2012)

25.43, and 25.163 in the three spatial directions, respectively;
its electronic contribution was found to be 4.45. These values
are totally consistent with those obtained from the cubic initial
conditions.

In comparison with previous theoretical first-principles
investigations,>>!” our « values are higher. This difference
may be explained by noting that in Refs. 3, 5, and 17 the
amorphous structures were obtained from a relaxed monoclinic
structure with cubic lattice vectors, which tends to have lower
k values. We should mention that direct comparison with
experimental measurement is often difficult due to the scarcity
of data for dielectric constants of amorphous bulk structures.

Note that the contribution of a given mode to the lattice
dielectric constant scales as Z}%/w?, where Z* is the mode
effective charge and w;, is the frequency of the Ath ir-active
phonon mode; a large « will be obtained with the existence
of modes with simultaneously high Z* and low w.>* It is
easy to understand that cubic HfO, (ZrO;) with modes of
higher Z* and lower w has a larger « value than a monoclinic
structure with modes of lower Z* and higher w. The amorphous
structures may have similar Z* and  values with their cubic
forms. This consideration should provide a way to explore
possible short range structures within a-Hf|_,Zr, O,.

The ensemble averaged lattice dielectric constants of all
the amorphous structures generated for different values of the
concentration x are presented in Fig. 4. We observe a gradual
increase (solid red line) in the values of dielectric constants
from a-HfO,, through Hf,_,Zr,0,, to a-ZrO,. We also note
that the spatially resolved dielectric constants in the X, Y, and
Z directions (represented by the black symbols in Fig. 4) are
quite isotropic, which is expected for amorphous structures. It
is very important to note that an isotropic dielectric constant is
obtained only when the values are averaged over the ensemble
of samples of the same structure (same x). For a single sample,
we always observe large spreads in the values of dielectric
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FIG. 4. (Color online) Lattice dielectric constants («x;) for the
amorphous structures of Hf;_,Zr,O,. All the black symbols are for
the values in each direction of X, Y, and Z averaged over ten samples,
while the square symbols connected with a solid red line represent
the values which are averaged over all three directions for each value
of x. In the inset the standard deviations of the dielectric constant
values over the ten samples along the X direction are presented.
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constants in different directions. This finding underpins the
major advantage of employing a rather inexpensive classical
MD to efficiently generate amorphous structures for the
statistical average of the physical properties. Note that all the
values of dielectric constants presented in this study are relative
to the dielectric constants at vacuum.

IV. SUMMARY

Using classical MD simulations within a melt and quench
scheme, the amorphous structures of HfO, and ZrO,, along
with their alloy structures of the form Hf,_,Zr,O,, have been
generated. A suitable potential function, namely the Born-
Mayer-Buckingham potential, has been adopted for these
simulations. The calculated coordination numbers and radial
distribution functions of the generated structures agree well
with those of the previous studies. The values of the ensemble

PHYSICAL REVIEW B 85, 224110 (2012)

averaged lattice dielectric constants of these amorphous
structures are nearly isotropic, close to those of their cubic
forms, and compare well with available experimental data.'*
On the other hand, a single sample always produces anisotropic
k values. Our results indicate that the combined approach of
classical MDD, for structure evolution, and quantum mechanical
first-principles DFT, for electronic structure analysis, is a
reliable technique for investigating high-« metal oxides.
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