4,097 research outputs found

    Quenching of light hadrons at RHIC in a collisional energy loss scenario

    Full text link
    We evaluate the nuclear suppression factor, RAA(pT)R_{AA}(p_T) for light hadrons by taking into account the collisional energy loss. We show that in the measured pTp_T domain of RHIC the elastic process is the dominant mechanism for the partonic energy loss.Comment: 4 pages with 3 figures, Quark Matter 2008 Proceeding

    Electric Field Control of Soliton Motion and Stacking in Trilayer Graphene

    Get PDF
    The crystal structure of a material plays an important role in determining its electronic properties. Changing from one crystal structure to another involves a phase transition which is usually controlled by a state variable such as temperature or pressure. In the case of trilayer graphene, there are two common stacking configurations (Bernal and rhombohedral) which exhibit very different electronic properties. In graphene flakes with both stacking configurations, the region between them consists of a localized strain soliton where the carbon atoms of one graphene layer shift by the carbon-carbon bond distance. Here we show the ability to move this strain soliton with a perpendicular electric field and hence control the stacking configuration of trilayer graphene with only an external voltage. Moreover, we find that the free energy difference between the two stacking configurations scales quadratically with electric field, and thus rhombohedral stacking is favored as the electric field increases. This ability to control the stacking order in graphene opens the way to novel devices which combine structural and electrical properties

    Band Structure Mapping of Bilayer Graphene via Quasiparticle Scattering

    Get PDF
    A perpendicular electric field breaks the layer symmetry of Bernal-stacked bilayer graphene, resulting in the opening of a band gap and a modification of the effective mass of the charge carriers. Using scanning tunneling microscopy and spectroscopy, we examine standing waves in the local density of states of bilayer graphene formed by scattering from a bilayer/trilayer boundary. The quasiparticle interference properties are controlled by the bilayer graphene band structure, allowing a direct local probe of the evolution of the band structure of bilayer graphene as a function of electric field. We extract the Slonczewski-Weiss-McClure model tight binding parameters as γ0=3.1\gamma_0 = 3.1 eV, γ1=0.39\gamma_1 = 0.39 eV, and γ4=0.22\gamma_4 = 0.22 eV.Comment: 12 pages, 4 figure

    Percolation in Models of Thin Film Depositions

    Full text link
    We have studied the percolation behaviour of deposits for different (2+1)-dimensional models of surface layer formation. The mixed model of deposition was used, where particles were deposited selectively according to the random (RD) and ballistic (BD) deposition rules. In the mixed one-component models with deposition of only conducting particles, the mean height of the percolation layer (measured in monolayers) grows continuously from 0.89832 for the pure RD model to 2.605 for the pure RD model, but the percolation transition belong to the same universality class, as in the 2- dimensional random percolation problem. In two- component models with deposition of conducting and isolating particles, the percolation layer height approaches infinity as concentration of the isolating particles becomes higher than some critical value. The crossover from 2d to 3d percolation was observed with increase of the percolation layer height.Comment: 4 pages, 5 figure

    Transcriptional profiling of vaccine-induced immune responses in humans and non-human primates

    Get PDF
    There is an urgent need for pre-clinical and clinical biomarkers predictive of vaccine immunogenicity, efficacy and safety to reduce the risks and costs associated with vaccine development. Results emerging from immunoprofiling studies in non-human primates and humans demonstrate clearly that (i) type and duration of immune memory are largely determined by the magnitude and complexity of the innate immune signals and (ii) genetic signatures highly predictive of B-cell and T-cell responses can be identified for specific vaccines. For vaccines with similar composition, e.g. live attenuated viral vaccines, these signatures share common patterns. Signatures predictive of vaccine efficacy have been identified in a few experimental challenge studies. This review aims to give an overview of the current literature on immunoprofiling studies in humans and also presents some of our own data on profiling of licensed and experimental vaccines in non-human primates

    An Empirical Study of Assumptions in Bayesian Optimisation

    Get PDF
    Inspired by the increasing desire to efficiently tune machine learning hyper-parameters, in this work we rigorously analyse conventional and non-conventional assumptions inherent to Bayesian optimisation. Across an extensive set of experiments we conclude that: 1) the majority of hyper-parameter tuning tasks exhibit heteroscedasticity and non-stationarity, 2) multi-objective acquisition ensembles with Pareto-front solutions significantly improve queried configurations, and 3) robust acquisition maximisation affords empirical advantages relative to its non-robust counterparts. We hope these findings may serve as guiding principles, both for practitioners and for further research in the field

    Regulation of Apoptosis in Myeloid Cells by Interferon Consensus Sequence–Binding Protein

    Get PDF
    Mice with a null mutation of the gene encoding interferon consensus sequence–binding protein (ICSBP) develop a disease with marked expansion of granulocytes and macrophages that frequently progresses to a fatal blast crisis, thus resembling human chronic myelogenous leukemia (CML). One important feature of CML is decreased responsiveness of myeloid cells to apoptotic stimuli. Here we show that myeloid cells from mice deficient in ICSBP exhibit reduced spontaneous apoptosis and a significant decrease in sensitivity to apoptosis induced by DNA damage. In contrast, apoptosis in thymocytes from ICSBP-deficient mice is unaffected. We also show that overexpression of ICSBP in the human U937 monocytic cell line enhances the rate of spontaneous apoptosis and the sensitivity to apoptosis induced by etoposide, lipopolysaccharide plus ATP, or rapamycin. Programmed cell death induced by etoposide was specifically blocked by peptides inhibitory for the caspase-1 or caspase-3 subfamilies of caspases. Studies of proapoptotic genes showed that cells overexpressing ICSBP have enhanced expression of caspase-3 precursor protein. In addition, analyses of antiapoptotic genes showed that overexpression of ICSBP results in decreased expression of Bcl-XL. These data suggest that ICSBP modulates survival of myeloid cells by regulating expression of apoptosis-related genes

    Canonical formulation of self-gravitating spinning-object systems

    Full text link
    Based on the Arnowitt-Deser-Misner (ADM) canonical formulation of general relativity, a canonical formulation of gravitationally interacting classical spinning-object systems is given to linear order in spin. The constructed position, linear momentum and spin variables fulfill standard Poisson bracket relations. A spatially symmetric time gauge for the tetrad field is introduced. The achieved formulation is of fully reduced form without unresolved constraints, supplementary, gauge, or coordinate conditions. The canonical field momentum is not related to the extrinsic curvature of spacelike hypersurfaces in standard ADM form. A new reduction of the tetrad degrees of freedom to the Einstein form of the metric field is suggested.Comment: 6 pages. v2: extended version; identical to the published one. v3: corrected misprints in (24) and (39); improved notation; added note regarding a further reference

    Inhomogeneous d-wave superconducting state of a doped Mott insulator

    Full text link
    Recent scanning tunneling microscope (STM) measurements discovered remarkable electronic inhomogeneity, i.e. nano-scale spatial variations of the local density of states (LDOS) and the superconducting energy gap, in the high-Tc superconductor BSCCO. Based on the experimental findings we conjectured that the inhomogeneity arises from variations in local oxygen doping level and may be generic of doped Mott insulators which behave rather unconventionally in screening the dopant ionic potentials at atomic scales comparable to the short coherence length. Here, we provide theoretical support for this picture. We study a doped Mott insulator within a generalized t-J model, where doping is accompanied by ionic Coulomb potentials centered in the BiO plane. We calculate the LDOS spectrum, the integrated LDOS, and the local superconducting gap, make detailed comparisons to experiments, and find remarkable agreement with the experimental data. We emphasize the unconventional screening in a doped Mott insulator and show that nonlinear screening dominates at nano-meter scales which is the origin of the electronic inhomogeneity. It leads to strong inhomogeneous redistribution of the local hole density and promotes the notion of a local doping concentration. We find that the inhomogeneity structure manifests itself at all energy scales in the STM tunneling differential conductance, and elucidate the similarity and the differences between the data obtained in the constant tunneling current mode and the same data normalized to reflect constant tip-to-sample distance. We also discuss the underdoped case where nonlinear screening of the ionic potential turns the spatial electronic structure into a percolative mixture of patches with smaller pairing gaps embedded in a background with larger gaps to single particle excitations.Comment: 19 pages, final versio
    corecore