5,717 research outputs found

    Pole expansion of self-energy and interaction effect on topological insulators

    Full text link
    We study effect of interactions on time-reversal-invariant topological insulators. Their topological indices are expressed by interacting Green's functions. Under the local self-energy approximation, we connect topological index and surface states of an interacting system to an auxiliary noninteracting system, whose Hamiltonian is related to the pole-expansions of the local self-energy. This finding greatly simplifies the calculation of interacting topological indices and gives an noninteracting pictorial description of interaction driven topological phase transitions. Our results also bridge studies of the correlated topological insulating materials with the practical dynamical-mean-field-theory calculations.Comment: 4.2 pages, 3 figures, reference added, typos correcte

    Simplified TeV leptophilic dark matter in light of DAMPE data

    Full text link
    Using a simplified framework, we attempt to explain the recent DAMPE cosmic e++eβˆ’e^+ + e^- flux excess by leptophilic Dirac fermion dark matter (LDM). The scalar (Ξ¦0\Phi_0) and vector (Ξ¦1\Phi_1) mediator fields connecting LDM and Standard Model particles are discussed. Under constraints of DM relic density, gamma-rays, cosmic-rays and Cosmic Microwave Background (CMB), we find that the couplings PβŠ—SP \otimes S, PβŠ—PP \otimes P, VβŠ—AV \otimes A and VβŠ—VV \otimes V can produce the right bump in e++eβˆ’e^+ + e^- flux for a DM mass around 1.5 TeV with a natural thermal annihilation cross-section ∼3Γ—10βˆ’26cm3/s \sim 3 \times 10^{-26} cm^3/s today. Among them, VβŠ—VV \otimes V coupling is tightly constrained by PandaX-II data (although LDM-nucleus scattering appears at one-loop level) and the surviving samples appear in the resonant region, mΞ¦1≃2mΟ‡m_{\Phi_1} \simeq 2m_{\chi}. We also study the related collider signatures, such as dilepton production ppβ†’Ξ¦1β†’β„“+β„“βˆ’pp \to \Phi_1 \to \ell^+\ell^-, and muon gβˆ’2g-2 anomaly. Finally, we present a possible U(1)XU(1)_X realization for such leptophilic dark matter.Comment: discussions added, version accepted by JHE

    Split orthogonal group: A guiding principle for sign-problem-free fermionic simulations

    Full text link
    We present a guiding principle for designing fermionic Hamiltonians and quantum Monte Carlo (QMC) methods that are free from the infamous sign problem by exploiting the Lie groups and Lie algebras that appear naturally in the Monte Carlo weight of fermionic QMC simulations. Specifically, rigorous mathematical constraints on the determinants involving matrices that lie in the split orthogonal group provide a guideline for sign-free simulations of fermionic models on bipartite lattices. This guiding principle not only unifies the recent solutions of the sign problem based on the continuous-time quantum Monte Carlo methods and the Majorana representation, but also suggests new efficient algorithms to simulate physical systems that were previously prohibitive because of the sign problem.Comment: See http://mathoverflow.net/questions/204460/how-to-prove-this-determinant-is-positive and https://terrytao.wordpress.com/2015/05/03/the-standard-branch-of-the-matrix-logarithm/ for discussions on mathematical aspect of the paper; v3 added footnotes [44, 59] and new supplemental materia
    • …
    corecore