176 research outputs found

    From institutional duality to institutional trifecta: Implications for family firms’ international subsidiaries

    Get PDF
    From institutional duality to institutional trifecta: Implications for family firms’ international subsidiarie

    Construction and Characterization of a PGN_0297 Mutant of Porphyromonas gingivalis: Evidence of the Contribution of PGN_0297 to Gingipain Activity

    Get PDF
    The periodontal pathogen Porphyromonas gingivalis shows colonial pigmentation on blood agar and produces gingipains (Kgp, RgpA, and RgpB), cysteine proteases involved in an organism’s virulence and pigmentation. We showed previously that deletion of the PGN_0300 gene abolished the pigmentation activity and reduced the proteolytic activity of gingipains. The role of the PGN_0297 gene, which consists of an operon with the PGN_0300 gene, is unclear. Herein we examined the effect of PGN_0297 gene deletion on the pigmentation and proteolytic activities and transcriptional levels of gingipains. A PGN_0297 gene deletion mutant (ΔPGN_0297) did not exhibit the pigmentation. The proteolytic activity of the gingipains was decreased in the culture supernatant and on the cell surface of ΔPGN_0297. The mutant ΔPGN_0297 failed to attenuate Akt phosphorylation at Thr308 and Ser473, but both phosphorylations were attenuated in the wild-type and its complementation strain. The deletion of PGN_0297 gene did not substantially affect the transcriptional levels of the gingipain genes kgp, rgpA, and rgpB. Taken together, these results indicate that PGN_0297 is closely involved in the secretion and maturation of gingipains

    Genetic Heterogeneity of Oesophageal Cancer in High-Incidence Areas of Southern and Northern China

    Get PDF
    BACKGROUND AND OBJECTIVE: Oesophageal cancer is one of the most common and deadliest cancers worldwide. Our previous population-based study reported a high prevalence of oesophageal cancer in Chaoshan, Guangdong Province, China. Ancestors of the Chaoshan population migrated from the Taihang Mountain region of north-central China, which is another high-incidence area for oesophageal cancer. The purpose of the present study was to obtain evidence of inherited susceptibility to oesophageal cancer in the Chaoshan population, with reference to the Taihang Mountain population, with the eventual goal of molecular identification of the disease genes. METHODS: We conducted familial correlation, commingling, and complex segregation analyses of 224 families from the Chaoshan population and 403 families from the Taihang population using the FPMM program of S.A.G.E. version 5.3.0. A second analysis focused on specific families having large numbers of affected individuals or early onset of the disease. RESULTS: For the general population, moderate sib-sib correlation was noticed for esophageal cancer. Additionally, brother-brother correlation was even higher. Commingling analyses indicated that a three-component distribution model best accounts for the variation in age of onset of oesophageal cancer, and that a multifactorial model provides the best fit to the general population data. An autosomal dominant mode and a dominant or recessive major gene with polygenic inheritance were found to be the best models of inherited susceptibility to oesophageal cancer in some large families. CONCLUSIONS: The current results provide evidence for inherited susceptibility to oesophageal cancer in certain high-risk groups in China, and support efforts to identify the susceptibility genes

    Cold-Season Surface Energy Balance on East Rongbuk Glacier, Northern Slope of Mt. Qomolangma (Everest)

    Get PDF
    As the highest peak on the earth, Mt. Qomolangma provides an unparalleled platform to study glacier-atmosphere interaction. Although glacier surface energy balance (SEB) on Mt. Qomolangma was examined during warm season, relevant knowledge during cold season is still unknown, which prevents a complete understanding of all-season glacier SEB on it. Based on an in-situ observation from October 2007 to January 2008, this study presents a cold-season glacier SEB result at 6,523 m above sea level on Mt. Qomolangma and identifies its atmospheric control. Our results show that the observational period experienced strong winds and deficient clouds. Near-surface wind speeds usually exceeded 10 m s−1, resulting in a substantial sensible heat transport toward glacier and thus enhancing outgoing longwave radiation, which, under the combined effect of deficient clouds, eventually caused an increase in longwave radiative loss. The large solar zenith angle and relatively high albedo of the glacier surface led to a small absorption of solar irradiance, which, in combination with the strong longwave radiation loss, resulted in a semi-permanent surface radiative loss. Uncommon over the highly reflective glacier surface, clouds decreased the incident solar radiation more than increased the longwave radiation, demonstrating that the clouds' shading effect surpassed its greenhouse effect. As a vital heat sink, the turbulent latent heat induced an average sublimation rate of 0.8 mm water equivalent per day. This study provides valuable insights into the atmospheric control on the cold-season glacier-atmosphere interaction at high altitudes on Mt. Qomolangma when meteorological variables are subject to the westerlies

    Complex 3D microfluidic architectures formed by mechanically guided compressive buckling.

    Get PDF
    Microfluidic technologies have wide-ranging applications in chemical analysis systems, drug delivery platforms, and artificial vascular networks. This latter area is particularly relevant to 3D cell cultures, engineered tissues, and artificial organs, where volumetric capabilities in fluid distribution are essential. Existing schemes for fabricating 3D microfluidic structures are constrained in realizing desired layout designs, producing physiologically relevant microvascular structures, and/or integrating active electronic/optoelectronic/microelectromechanical components for sensing and actuation. This paper presents a guided assembly approach that bypasses these limitations to yield complex 3D microvascular structures from 2D precursors that exploit the full sophistication of 2D fabrication methods. The capabilities extend to feature sizes <5 μm, in extended arrays and with various embedded sensors and actuators, across wide ranges of overall dimensions, in a parallel, high-throughput process. Examples include 3D microvascular networks with sophisticated layouts, deterministically designed and constructed to expand the geometries and operating features of artificial vascular networks

    Whole-genome sequencing of <em>Oryza brachyantha</em> reveals mechanisms underlying <em>Oryza</em> genome evolution

    Get PDF
    The wild species of the genus Oryza contain a largely untapped reservoir of agronomically important genes for rice improvement. Here we report the 261-Mb de novo assembled genome sequence of Oryza brachyantha. Low activity of long-terminal repeat retrotransposons and massive internal deletions of ancient long-terminal repeat elements lead to the compact genome of Oryza brachyantha. We model 32,038 protein-coding genes in the Oryza brachyantha genome, of which only 70% are located in collinear positions in comparison with the rice genome. Analysing breakpoints of non-collinear genes suggests that double-strand break repair through non-homologous end joining has an important role in gene movement and erosion of collinearity in the Oryza genomes. Transition of euchromatin to heterochromatin in the rice genome is accompanied by segmental and tandem duplications, further expanded by transposable element insertions. The high-quality reference genome sequence of Oryza brachyantha provides an important resource for functional and evolutionary studies in the genus Oryza
    • …
    corecore