14 research outputs found

    Genomic epidemiology of Vibrio cholerae reveals the regional and global spread of two epidemic non-toxigenic lineages

    Get PDF
    Non-toxigenic Vibrio cholerae isolates have been found associated with diarrheal disease globally, however, the global picture of non-toxigenic infections is largely unknown. Among non-toxigenic V. cholerae, ctxAB negative, tcpA positive (CNTP) isolates have the highest risk of disease. From 2001 to 2012, 71 infectious diarrhea cases were reported in Hangzhou, China, caused by CNTP serogroup O1 isolates. We sequenced 119 V. cholerae genomes isolated from patients, carriers and the environment in Hangzhou between 2001 and 2012, and compared them with 850 publicly available global isolates. We found that CNTP isolates from Hangzhou belonged to two distinctive lineages, named L3b and L9. Both lineages caused disease over a long time period with usually mild or moderate clinical symptoms. Within Hangzhou, the spread route of the L3b lineage was apparently from rural to urban areas, with aquatic food products being the most likely medium. Both lineages had been previously reported as causing local endemic disease in Latin America, but here we show that global spread of them has occurred, with the most likely origin of L3b lineage being in Central Asia. The L3b lineage has spread to China on at least three occasions. Other spread events, including from China to Thailand and to Latin America were also observed. We fill the missing links in the global spread of the two non-toxigenic serogroup O1 V. cholerae lineages that can cause human infection. The results are important for the design of future disease control strategies: surveillance of V. cholerae should not be limited to ctxAB positive strains

    Change in antimicrobial susceptibility of Listeria spp. in response to stress conditions

    Get PDF
    Listeria species are exposed to various stressors throughout the food chain, which are crucial for microbe mitigation strategy in the food industry. However, the survival capabilities and development of antimicrobial resistance by Listeria spp. under different food processing environments (FPEs) stressors are not yet well understood. Hence, this study aims to determine the difference in survivability and antimicrobial susceptibility of L. monocytogenes (Lm) and other Listeria species (non-Lm) strains exposed to different FPEs stressors, including heat, acidic and alkaline pH, UV irradiation, and osmotic stress. For this, a collection of 11 Lm and 10 non-Lm strains were used to conduct experiments. This study showed that Lm strains were relatively more tolerant to environmental stresses than non-Lm strains (p > 0.05). Additionally, the evaluation of stress-induced resistance toward antimicrobials showed that anaerobic incubation, after exposition to environmental stresses, rendered Lm and non-Lm more resistant to antimicrobial agents than aerobic incubation. Furthermore, the study observed that different stressors induced an increase in minimum inhibitory concentrations (MICs) of certain antimicrobials. Specifically, heat stress persuaded an increase in MICs of tetracycline under aerobic incubation, and gentamicin and ciprofloxacin under anaerobic incubation. Acidic/alkaline pH induced an increase in MICs of gentamicin, ciprofloxacin, and trimethoprim-sulfamethoxazole, especially under anaerobic incubation. However, UV stress induced increase in MICs of tetracycline and trimethoprim-sulfamethoxazole under aerobic incubation and gentamicin, ciprofloxacin, and trimethoprim-sulfamethoxazole under anaerobic incubation. Additionally, osmotic stress induced an increase in MICs of tetracycline and ampicillin under aerobic incubation and gentamicin, tetracycline, and trimethoprim-sulfamethoxazole under anaerobic incubation. Collectively, this study highlights that stress tolerance may contribute to the predominance of Listeria species among FPEs and induce the development of antimicrobial resistance even without antibiotic selection pressure. The findings of this study may guide updated strategies to mitigate Listeria species in the food industry

    Performance of co-operative relay for multicast multi-hop networks using virtual MIMO

    Get PDF
    Multicasting is a bandwidth conservation technology that can utilize the resources very efficiently, reduces the traffic volume and improves the network capacity by simultaneously delivering a single stream of information to more than one intended receivers. Wireless medium is inherently multicast in nature and this property can be exploited with virtual MIMO. The improvement in BER can be achieved with multicasting over multi-hop wireless networks. The network will also be more energy efficient. The BER performance and energy consumption of two-hop networks with STBC has been simulated in this paper. These performance curves will be helpful in many ways, i.e., the selection of number of antennas on the receiver, the selection of the number of intermediate nodes (relay stations) and the selection of modulation and coding schemes to achieve a desirable BER performance. The multicast multi-hop virtual MIMO configuration is proposed for video streaming applications for Long Term Evolution (LTE) 3G wireless networks

    Multicast based dual amplify and forward relay scheme for 2 hop networks

    No full text
    The use of multicasting over multi-hop networks seems an attractive new way to provide support to real-time applications like video streaming. In this paper, we proposed a 2-hop Dual Amplify-and-Forward (DAF) relay scheme. In this scheme, only the intermediate nodes (relay nodes) can cooperate with each other and there is no cooperation between transmitting and receiving nodes. This scheme has achieved a 4 dB gain over the earlier proposed 2-hop multicast based virtual MIMO relay scheme. In this paper we compare the two multicast relay schemes and analyze their performance with the help of MATLAB simulation

    Water Ice Detection Research in Utopia Planitia Based on Simulation of Mars Rover Full-Polarimetric Subsurface Penetrating Radar

    No full text
    The probe of China’s first Mars exploration mission, Tianwen-1, has been successfully launched. It will carry out scientific exploration on the topography, soil characteristics, water ice, climate, ionosphere, and physical fields of Mars. Different from other rovers landing on the moon and Mars, the Zhurong rover is equipped with a full polarimetric subsurface penetrating radar (FP-SPR) system for the first time. The radar’s mission is to depict the shallow subsurface structure of Mars and search for possible water ice. Therefore, in this paper, a 3D realistic structure model is established and numerically simulated based on the possible subsurface structure of Utopia Planitia (the landing area). Influencing factors such as topographical fluctuations, rocks, water ice, and the variation of dielectric constant of different layers are added to the model. The analysis of the acquired FP-SPR data set shows that the two-dimensional principal component analysis (2D-PCA) method can extract effective reflected signals from the radar data with noise interference and improve the data quality. These clearly imaged targets may be water ice blocks, so the application of 2D-PCA to FP-SPR data increases the imaging quality of suspected water ice targets. The results of this paper are the basis for future processing of the measured FP-SPR data on Mars, which will help to identify more details of subsurface structures

    Epidemiological and Genomic Characterization of Campylobacter jejuni Isolates from a Foodborne Outbreak at Hangzhou, China

    No full text
    Background: Foodborne outbreaks caused by Campylobacter jejuni have become a significant public health problem worldwide. Applying genomic sequencing as a routine part of foodborne outbreak investigation remains in its infancy in China. We applied both traditional PFGE profiling and genomic investigation to understand the cause of a foodborne outbreak in Hangzhou in December 2018. Method: A total of 43 fecal samples, including 27 sick patients and 16 canteen employees from a high school in Hangzhou city in Zhejiang province, were recruited. Routine real-time fluorescent PCR assays were used for scanning the potential infectious agents, including viral pathogens (norovirus, rotavirus, adenovirus, and astrovirus), and bacterial pathogens (Salmonella, Shigella, Campylobacter jejuni, Vibrio parahaemolyticus and Vibrio cholerae). Bacterial selection medium was used to isolate and identify the positive bacteria identified by molecular test. Pulsed field gel electrophoresis (PFGE), and next generation sequencing (NGS) were applied to fifteen recovered C. jejuni isolates to further understand the case linkage of this particular outbreak. Additionally, we retrieved reference genomes from the NCBI database and performed a comparative genomics analysis with the examined genomes produced in this study. Results: The analyzed samples were found to be negative for the queried viruses. Additionally, Salmonella, Shigella, Vibrio parahaemolyticus and Vibrio cholera were not detected. Fifteen C. jejuni strains were identified by the real-time PCR assay and bacterial selection medium. These C. jejuni strains were classified into two genetic profiles defined by the PFGE. Out of fifteen C. jejuni strains, fourteen have a unified consistent genotype belonging to ST2988, and the other strain belongs to ST8149, with a 66.7% similarity in comparison with the rest of the strains. Moreover, all fifteen strains harbored blaOXA-61 and tet(O), in addition to a chromosomal mutation in gyrA (T86I). The examined fourteen strains of ST2988 from CC354 clone group have very minimal genetic difference (3~66 SNPs), demonstrated by the phylogenomic investigation. Conclusion: Both genomic investigation and PFGE profiling confirmed that C. jejuni ST2988, a new derivative from CC354, was responsible for the foodborne outbreak Illustrated in this study

    Preparation of Polyaniline-Modified Cellulose/PDMS Composite Triboelectric Material and Application of Its Pretreatment in MOW Pulp

    No full text
    Self-powered electronic equipment has rapidly developed in the fields of sensing, motion monitoring, and energy collection, posing a greater challenge to triboelectric materials. Triboelectric materials need to enhance their electrical conductivity and mechanical strength to address the increasing demand for stability and to mitigate unpredictable physical damage. In this study, polyaniline-modified cellulose was prepared by means of in situ polymerization and compounded with polydimethylsiloxane, resulting in a triboelectric material with enhanced strength and conductivity. The material was fabricated into a tubular triboelectric nanogenerator (TENG) (G-TENG), and an electrocatalytic pretreatment of mixed office waste paper (MOW) pulp was performed using papermaking white water as the flowing liquid to improve the deinking performance. The electrical output performance of G-TENG is highest at a flow rate of 400 mL/min, producing a voltage of 22.76 V and a current of 1.024 ÎŒA. Moreover, the deinking effect of MOW was enhanced after the electrical pretreatment. This study explores the potential application of G-TENG as a self-powered sensor power supply and emphasizes its prospect as an energy collection device

    Review of Ground Penetrating Radar Applications for Water Dynamics Studies in Unsaturated Zone

    No full text
    For water dynamics investigation in unsaturated (vadose) zones, ground penetrating radar is a popular hydro-geophysical method because it is non-invasive for soil, has high resolution and the results have a direct link with water content. Soil water content and soil hydraulic properties are two key factors for describing the water dynamics in vadose zones. There has been tremendous progress in soil water content and soil hydraulic properties estimation with ground penetrating radar. The purpose of this paper is to provide an overview of the application of ground penetrating radar for soil water dynamics studies. This paper first summarizes various methods for the determination of soil water content. including traditional methods in the surveys of surface ground penetrating radar, borehole ground penetrating radar, and off-ground ground penetrating radar, as well as relatively new methods, such as full waveform inversion, the average envelope amplitude method, and the frequency shift method. This paper further provides a review for estimating soil hydraulic properties with GPR according to the types of ground penetrating radar data. We hope that this review can provide a reference for the application of ground penetrating radar in soil water dynamics studies in the future

    A nontyphoidal Salmonella serovar domestication accompanying enhanced niche adaptation

    No full text
    Abstract Invasive nontyphoidal Salmonella (iNTS) causes extraintestinal infections with ~15% case fatality in many countries. However, the mechanism by which iNTS emerged in China remains unaddressed. We conducted clinical investigations of iNTS infection with recurrent treatment failure, caused by underreported Salmonella enterica serovar Livingstone (SL). Genomic epidemiology demonstrated five clades in the SL population and suggested that the international animal feed trade was a likely vehicle for their introduction into China, as evidenced by multiple independent transmission incidents. Importantly, isolates from Clade‐5‐I‐a/b, predominant in China, showed an invasive nature in mice, chicken and zebrafish infection models. The antimicrobial susceptibility testing revealed most isolates (> 96%) in China are multidrug‐resistant (MDR). Overall, we offer exploiting genomics in uncovering international transmission led by the animal feed trade and highlight an emerging hypervirulent clade with increased resistance to frontline antibiotics
    corecore