13,911 research outputs found

    Empirical Evaluation of Test Coverage for Functional Programs

    Get PDF
    The correlation between test coverage and test effectiveness is important to justify the use of coverage in practice. Existing results on imperative programs mostly show that test coverage predicates effectiveness. However, since functional programs are usually structurally different from imperative ones, it is unclear whether the same result may be derived and coverage can be used as a prediction of effectiveness on functional programs. In this paper we report the first empirical study on the correlation between test coverage and test effectiveness on functional programs. We consider four types of coverage: as input coverages, statement/branch coverage and expression coverage, and as oracle coverages, count of assertions and checked coverage. We also consider two types of effectiveness: raw effectiveness and normalized effectiveness. Our results are twofold. (1) In general the findings on imperative programs still hold on functional programs, warranting the use of coverage in practice. (2) On specific coverage criteria, the results may be unexpected or different from the imperative ones, calling for further studies on functional programs

    A Study on the Training Mode of Electronic Application- Oriented Undergraduate with Industry Needs

    Get PDF
    Electronic industry is an economic pillar in China. Due to the Moore’s Law, the industry requires continuous development and innovation. In order to achieve these goals, the cultivation of electronic application-oriented undergraduate is essential. However, at current, the innovative educational concepts and teaching methods are lagging behind so that the graduates cannot meet the requirements of electronic industry. In this paper, we adopt a variety of measures, which include the construction of parallel course system, the establishment of cooperative education mechanics and the creation of training evaluation mode, to improve the training quality of electronic application-oriented undergraduate. The research findings show that the undergraduates improve their engineering practices and innovation abilities

    An Algorithmic Framework for Efficient Large-Scale Circuit Simulation Using Exponential Integrators

    Full text link
    We propose an efficient algorithmic framework for time domain circuit simulation using exponential integrator. This work addresses several critical issues exposed by previous matrix exponential based circuit simulation research, and makes it capable of simulating stiff nonlinear circuit system at a large scale. In this framework, the system's nonlinearity is treated with exponential Rosenbrock-Euler formulation. The matrix exponential and vector product is computed using invert Krylov subspace method. Our proposed method has several distinguished advantages over conventional formulations (e.g., the well-known backward Euler with Newton-Raphson method). The matrix factorization is performed only for the conductance/resistance matrix G, without being performed for the combinations of the capacitance/inductance matrix C and matrix G, which are used in traditional implicit formulations. Furthermore, due to the explicit nature of our formulation, we do not need to repeat LU decompositions when adjusting the length of time steps for error controls. Our algorithm is better suited to solving tightly coupled post-layout circuits in the pursuit for full-chip simulation. Our experimental results validate the advantages of our framework.Comment: 6 pages; ACM/IEEE DAC 201
    • …
    corecore