1,570 research outputs found

    Biased amino acid composition in warm-blooded animals

    Get PDF
    Among eubacteria and archeabacteria, amino acid composition is correlated with habitat temperatures. In particular, species living at high temperatures have proteins enriched in the amino acids E-R-K and depleted in D-N-Q-T-S-H-A. Here, we show that this bias is a proteome-wide effect in prokaryotes, and that the same trend is observed in fully sequenced mammals and chicken compared to cold-blooded vertebrates (Reptilia, Amphibia and fish). Thus, warm-blooded vertebrates likely experienced genome-wide weak positive selection on amino acid composition to increase protein thermostability

    Transcriptional coupling of neighbouring genes and gene expression noise: evidence that gene orientation and non-coding transcripts are modulators of noise

    Get PDF
    For some genes, notably essential genes, expression when expression is needed is vital hence low noise in expression is favourable. For others noise is necessary for coping with stochasticity or for providing dice-like mechanisms to control cell fate. But how is noise in gene expression modulated? We hypothesise that gene orientation may be crucial, as for divergently organized gene pairs expression of one gene could affect chromatin of a neighbour thereby reducing noise. Transcription of antisense non-coding RNA from a shared promoter is similarly argued to be a noise-reduction mechanism. Stochastic simulation models confirm the expectation. The model correctly predicts: that protein coding genes with bi-promoter architecture, including those with a ncRNA partner, have lower noise than other genes; divergent gene pairs uniquely have correlated expression noise; distance between promoters predicts noise; ncRNA divergent transcripts are associated with genes that a priori would be under selection for low noise; essential genes reside in divergent orientation more than expected; bi-promoter pairs are rare subtelomerically, cluster together and are enriched in essential gene clusters. We conclude that gene orientation and transcription of ncRNAs, even if unstable, are candidate modulators of noise levels

    The Effects of Network Neighbours on Protein Evolution

    Get PDF
    Interacting proteins may often experience similar selection pressures. Thus, we may expect that neighbouring proteins in biological interaction networks evolve at similar rates. This has been previously shown for protein-protein interaction networks. Similarly, we find correlated rates of evolution of neighbours in networks based on co-expression, metabolism, and synthetic lethal genetic interactions. While the correlations are statistically significant, their magnitude is small, with network effects explaining only between 2% and 7% of the variation. The strongest known predictor of the rate of protein evolution remains expression level. We confirmed the previous observation that similar expression levels of neighbours indeed explain their similar evolution rates in protein-protein networks, and showed that the same is true for metabolic networks. In co-expression and synthetic lethal genetic interaction networks, however, neighbouring genes still show somewhat similar evolutionary rates even after simultaneously controlling for expression level, gene essentiality and gene length. Thus, similar expression levels and related functions (as inferred from co-expression and synthetic lethal interactions) seem to explain correlated evolutionary rates of network neighbours across all currently available types of biological networks

    Amino acid composition in endothermic vertebrates is biased in the same direction as in thermophilic prokaryotes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Among bacteria and archaea, amino acid usage is correlated with habitat temperatures. In particular, protein surfaces in species thriving at higher temperatures appear to be enriched in amino acids that stabilize protein structure and depleted in amino acids that decrease thermostability. Does this observation reflect a causal relationship, or could the apparent trend be caused by phylogenetic relatedness among sampled organisms living at different temperatures? And do proteins from endothermic and exothermic vertebrates show similar differences?</p> <p>Results</p> <p>We find that the observed correlations between the frequencies of individual amino acids and prokaryotic habitat temperature are strongly influenced by evolutionary relatedness between the species analysed; however, a proteome-wide bias towards increased thermostability remains after controlling for phylogeny. Do eukaryotes show similar effects of thermal adaptation? A small shift of amino acid usage in the expected direction is observed in endothermic ('warm-blooded') mammals and chicken compared to ectothermic ('cold-blooded') vertebrates with lower body temperatures; this shift is not simply explained by nucleotide usage biases.</p> <p>Conclusion</p> <p>Protein homologs operating at different temperatures have different amino acid composition, both in prokaryotes and in vertebrates. Thus, during the transition from ectothermic to endothermic life styles, the ancestors of mammals and of birds may have experienced weak genome-wide positive selection to increase the thermostability of their proteins.</p

    Miniaturization of Branch-Line Coupler Using Composite Right/Left-Handed Transmission Lines with Novel Meander-shaped-slots CSSRR

    Get PDF
    A novel compact-size branch-line coupler using composite right/left-handed transmission lines is proposed in this paper. In order to obtain miniaturization, composite right/left-handed transmission lines with novel complementary split single ring resonators which are realized by loading a pair of meander-shaped-slots in the split of the ring are designed. This novel coupler occupies only 22.8% of the area of the conventional approach at 0.7 GHz. The proposed coupler can be implemented by using the standard printed-circuit-board etching processes without any implementation of lumped elements and via-holes, making it very useful for wireless communication systems. The agreement between measured and stimulated results validates the feasible configuration of the proposed coupler

    Understanding Molecular Mechanisms of the Brain Through Transcriptomics

    Get PDF
    The brain is the most complicated organ in the human body with more than ten thousand genes expressed in each region. The molecular activity of the brain is divergent in various brain regions, both spatially and temporally. The function of each brain region lies in the fact that each region has different gene expression profiles, the possibility of differential RNA splicing, as well as various post-transcriptional and translational modification processes. Understanding the overall activity of the brain at the molecular level is essential for a comprehensive understanding of how the brain works. Fortunately, the development of next generation sequencing technology has made it possible to measure the molecular activity of a specific tissue as a daily routine approach of research. Therefore, at the molecular level, the application of sequencing technology to investigate the molecular organization of the brain has become a novel field, and significant progress has been made recently in this field. In this paper, we reviewed the major computational methods used in the analysis of brain transcriptome, including the application of these methods to the research of human and non-human mammal brains. Finally, we discussed the utilization of transcriptome methods in neurological diseases
    corecore