1,005 research outputs found

    Building an eCRM Analytical System with Neural Network

    Get PDF

    A New Method for Fast Computation of Moments Based on 8-neighbor Chain CodeApplied to 2-D Objects Recognition

    Get PDF
    2D moment invariants have been successfully applied in pattern recognition tasks. The main difficulty of using moment invariants is the computational burden. To improve the algorithm of moments computation through an iterative method, an approach for fast computation of moments based on the 8-neighbor chain code is proposed in this paper. Then artificial neural networks are applied for 2D shape recognition with moment invariants. Compared with the method of polygonal approximation, this approach shows higher accuracy in shape representation and faster recognition speed in experiment

    Graphene-Based Heterogeneous Electrodes for Energy Storage

    Get PDF
    As an intriguing two dimensional material, graphene has attracted intense interest due to its high stability, large carrier mobility as well as the excellent conductivity. The addition of graphene into the heterogeneous electrodes has been proved to be an effective method to improve the energy storage performance. In this chapter, the latest graphene based heterogeneous electrodes will be fully reviewed and discussed for energy storage. In detail, the assembly methods, including the ball-milling, hydrothermal, electrospinning, and microwave-assisted approaches will be illustrated. The characterization techniques, including the x-ray diffraction, scanning electron microscopy, transmission electron microscopy, electrochemical impedance spectroscopy, atomic force microscopy, and x-ray photoelectron spectroscopy will also be presented. The mechanisms behind the improved performance will also be fully reviewed and demonstrated. A conclusion and an outlook will be given in the end of this chapter to summarize the recent advances and the future opportunities, respectively

    Zc(3900)Z_c(3900) as a DDˉD\bar{D}^* molecule from the pole counting rule

    Full text link
    A comprehensive study on the nature of the Zc(3900)Z_c(3900) resonant structure is carried out in this work. By constructing the pertinent effective Lagrangians and considering the important final-state-interaction effects, we first give a unified description to all the relevant experimental data available, including the J/ψπJ/\psi\pi and ππ\pi\pi invariant mass distributions from the e+eJ/ψππe^+e^-\to J/\psi\pi\pi process, the hcπh_c\pi distribution from e+ehcππe^+e^-\to h_c\pi\pi and also the DDˉD\bar D^{*} spectrum in the e+eDDˉπe^+e^-\to D\bar D^{*}\pi process. After fitting the unknown parameters to the previous data, we search the pole in the complex energy plane and find only one pole in the nearby energy region in different Riemann sheets. Therefore we conclude that Zc(3900)Z_c(3900) is of DDˉD\bar D^* molecular nature, according to the pole counting rule method~[Nucl.~Phys.~A543, 632 (1992); Phys.~Rev.~D 35,~1633 (1987)]. We emphasize that the conclusion based upon the pole counting method is not trivial, since both the DDˉD\bar D^{*} contact interactions and the explicit ZcZ_c exchanges are introduced in our analyses and they lead to the same conclusion.Comment: 21 pages, 9 figures. To match the published version in PRD. Additional discussion on the spectral density function is include
    corecore