10,480 research outputs found

    CPCP violation in charmed hadron decays into neutral kaons

    Full text link
    We find a new CPCP violating effect in charmed hadron decays into neutral kaons, which is induced by the interference between the Cabibbo-favored and doubly Cabibbo-suppressed amplitudes with the K0βˆ’Kβ€Ύ0K^{0}-\overline K^{0} mixing. It is estimated to be of order of O(10βˆ’3)\mathcal{O}(10^{-3}), much larger than the direct CPCP asymmetry, but missed in the literature. To reveal this new CPCP violation effect, we propose a new observable, the difference of the CPCP asymmetries in the D+β†’Ο€+KS0D^{+}\to \pi^{+}K_S^0 and Ds+β†’K+KS0D_{s}^{+}\to K^{+} K_S^0 modes. Once the new effect is determined by experiments, the direct CPCP asymmetry then can be extracted and used to search for new physics.Comment: 6 pages, 3 figures. Contribution to the proceeding of The 15th International Conference on Flavor Physics & CP Violation, 5-9 June 2017, Prague, Czech Republi

    Theoretical Analysis of Robust Overfitting for Wide DNNs: An NTK Approach

    Full text link
    Adversarial training (AT) is a canonical method for enhancing the robustness of deep neural networks (DNNs). However, recent studies empirically demonstrated that it suffers from robust overfitting, i.e., a long time AT can be detrimental to the robustness of DNNs. This paper presents a theoretical explanation of robust overfitting for DNNs. Specifically, we non-trivially extend the neural tangent kernel (NTK) theory to AT and prove that an adversarially trained wide DNN can be well approximated by a linearized DNN. Moreover, for squared loss, closed-form AT dynamics for the linearized DNN can be derived, which reveals a new AT degeneration phenomenon: a long-term AT will result in a wide DNN degenerates to that obtained without AT and thus cause robust overfitting. Based on our theoretical results, we further design a method namely Adv-NTK, the first AT algorithm for infinite-width DNNs. Experiments on real-world datasets show that Adv-NTK can help infinite-width DNNs enhance comparable robustness to that of their finite-width counterparts, which in turn justifies our theoretical findings. The code is available at https://github.com/fshp971/adv-ntk

    KS0βˆ’KL0K_S^0-K_L^0 Asymmetries and CPCP Violation in Charmed Baryon Decays into Neutral Kaons

    Full text link
    We study the KS0βˆ’KL0K^0_S-K^0_L asymmetries and CPCP violations in charm-baryon decays with neutral kaons in the final state. The KS0βˆ’KL0K^0_S-K^0_L asymmetry can be used to search for two-body doubly Cabibbo-suppressed amplitudes of charm-baryon decays, with the one in Ξ›c+β†’pKS,L0\Lambda^+_c\to pK^0_{S,L} as a promising observable. Besides, it is studied for a new CPCP-violation effect in these processes, induced by the interference between the Cabibbo-favored and doubly Cabibbo-suppressed amplitudes with the neutral kaon mixing. Once the new CP-violation effect is determined by experiments, the direct CPCP asymmetry in neutral kaon modes can then be extracted and used to search for new physics. The numerical results based on SU(3)SU(3) symmetry will be tested by the experiments in the future.Comment: 15 pages, 3 tables. Version published in JHE

    Landau-Zener Tunnelling in a Nonlinear Three-level System

    Full text link
    We present a comprehensive analysis of the Landau-Zener tunnelling of a nonlinear three-level system in a linearly sweeping external field. We find the presence of nonzero tunnelling probability in the adiabatic limit (i.e., very slowly sweeping field) even for the situation that the nonlinear term is very small and the energy levels keep the same topological structure as that of linear case. In particular, the tunnelling is irregular with showing an unresolved sensitivity on the sweeping rate. For the case of fast-sweeping fields, we derive an analytic expression for the tunnelling probability with stationary phase approximation and show that the nonlinearity can dramatically influence the tunnelling probability when the nonlinear "internal field" resonate with the external field. We also discuss the asymmetry of the tunnelling probability induced by the nonlinearity. Physics behind the above phenomena is revealed and possible application of our model to triple-well trapped Bose-Einstein condensate is discussed.Comment: 8 pages, 8 figure

    Prognostic value of routine laboratory variables in prediction of breast cancer recurrence.

    Get PDF
    The prognostic value of routine laboratory variables in breast cancer has been largely overlooked. Based on laboratory tests commonly performed in clinical practice, we aimed to develop a new model to predict disease free survival (DFS) after surgical removal of primary breast cancer. In a cohort of 1,596 breast cancer patients, we analyzed the associations of 33 laboratory variables with patient DFS. Based on 3 significant laboratory variables (hemoglobin, alkaline phosphatase, and international normalized ratio), together with important demographic and clinical variables, we developed a prognostic model, achieving the area under the curve of 0.79. We categorized patients into 3 risk groups according to the prognostic index developed from the final model. Compared with the patients in the low-risk group, those in the medium- and high-risk group had a significantly increased risk of recurrence with a hazard ratio (HR) of 1.75 (95% confidence interval [CI] 1.30-2.38) and 4.66 (95% CI 3.54-6.14), respectively. The results from the training set were validated in the testing set. Overall, our prognostic model incorporating readily available routine laboratory tests is powerful in identifying breast cancer patients who are at high risk of recurrence. Further study is warranted to validate its clinical application

    Pixel Sampling for Style Preserving Face Pose Editing

    Full text link
    The existing auto-encoder based face pose editing methods primarily focus on modeling the identity preserving ability during pose synthesis, but are less able to preserve the image style properly, which refers to the color, brightness, saturation, etc. In this paper, we take advantage of the well-known frontal/profile optical illusion and present a novel two-stage approach to solve the aforementioned dilemma, where the task of face pose manipulation is cast into face inpainting. By selectively sampling pixels from the input face and slightly adjust their relative locations with the proposed ``Pixel Attention Sampling" module, the face editing result faithfully keeps the identity information as well as the image style unchanged. By leveraging high-dimensional embedding at the inpainting stage, finer details are generated. Further, with the 3D facial landmarks as guidance, our method is able to manipulate face pose in three degrees of freedom, i.e., yaw, pitch, and roll, resulting in more flexible face pose editing than merely controlling the yaw angle as usually achieved by the current state-of-the-art. Both the qualitative and quantitative evaluations validate the superiority of the proposed approach
    • …
    corecore