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Abstract

Automatic negotiation pricing and differential pricing aim to provide different customers with products/services

that adequately meet their requirements at the “right” price. This often takes place with the purchase of

expensive products/services and in the business-to-business context. Effective negotiation pricing can help

enhance a company’s profitability, balance supply and demand, and improve the customer satisfaction.

However, determining the “right” price is a rather complex decision-making problem that puzzles pricing

managers, as it needs to consider information from many constituents of the purchase channel. To further

advance this line of research, this study proposes a systematic and learning approach that consists of three

different types of fuzzy systems (FSs) to provide intelligent decision support for negotiation pricing. More

specifically, the three FSs include: 1) a standard FS, which is a typical multiple inputs and single output

FS that forms a mathematical mapping from the input space to the output space; 2) an SFS-SISOM, which

is a linear fuzzy inference model with a single input and a single output module; and 3) a hierarchical FS,

which consists of several FSs in a hierarchical manner to perform fuzzy inference. To address the existing

problem of a standard FS suffering from the high-dimensional problem with a large number of influential

factors, a generalized type of FS (named hierarchical FS), including its mathematical models and suitabil-

ity for tackling the negotiation pricing problem, is introduced. In particular, a proof-of-concept prototype

system that integrates these three FSs is also developed and presented. From a system design perspective,

this artifact provides immense potential and flexibility for end users to choose the most suitable model for

the given problem. The utility and effectiveness of this proposed system is illustrated and examined by

three experimental datasets that vary from dimensionality and data coverage. Moreover, the performances

of three different approaches are compared and discussed with respect to some important properties of

decision support systems (DSSs).
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1. Introduction

Intelligent negotiation pricing and differential pricing are prevalent in retailing and business-to-business

(B2B), and it is playing an increasingly important role in electronic businesses. In traditional retailing, it

is natural to provide standard products and services to all customers at a standard price. In recent years,

with the rapid development of marketing science, it is well recognized that different marketing and pricing

strategies should be applied to different segments of customers, because differential pricing can substantially

enhance organizational profitability and improve customer satisfaction. This emerging phenomenon often

occurs in the purchase of expensive products/services (e.g., cars, houses, and systems). In particular,

tailor-made products/services require a sales process to negotiate and settle the final price with customers

individually. Furthermore, the outcomes of negotiation pricing and differential pricing often have a long-term

impact on the organizational supply chain relationship and the reputation of business in the B2B arena. In

supply chain management, for instance, price negotiation takes place during annual price reviews, thereby

providing an opportunity for suppliers to adjust prices in response to recent changes in costs, as well as the

customer relationships [20, 21]. Many examples of this scenario can be found in the industry. For example,

broadband wireless service providers may provide differentiated services to their customers with a variety

of customized prices [9]; theaters provide personalized prices of last-minute tickets depending on the time

remaining and the customer’s location [15].

To increase the effectiveness and efficiency of negotiation pricing, companies often delegate certain de-

grees of pricing authority to sales representatives who have direct contact with and better knowledge of

customers. The agreed price will then be approved by the pricing manager. However, the salespeople may

have different sales skills and preferences, as empirical findings have revealed that sales representatives might

offer too many price concessions in order to ensure the order [30]. Therefore, from the perspective of pricing

managers, disclosing the reservation price to all human agents is unfavorable. In essence, decision-making for

negotiation pricing is a rather complicated process because it needs to consider information from a plethora

of organizational dimensions to identify the right price for the company. It is worth noting that negotiation

pricing does not support the entire dynamic and interactive process of price negotiation. Instead, it supports

the most fundamental problem in the price negotiation process, which helps pricing managers to identify

the right price when offering the unique product/service to each individual customer.

Prior research efforts have been devoted to providing decision support for negotiation pricing through

different techniques, including game theory (GT) [9, 34], neural networks [2, 20], expert systems [4], case-

based reasoning [15], and fuzzy logic [12, 17, 18]. Notwithstanding, certain drawbacks and challenges still

exist with these approaches because some hypothetical assumptions are difficult to achieve in real scenarios,

and the assessment of utility functions is not feasible in many studies due to heterogeneity and incidental
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parameters problems. Expert systems are heavily reliant on expert knowledge and/or static negotiation

strategies. Hence, capturing knowledge in manual ways for the resultant system would be less flexible and

inefficient to handle the dynamic changes and new cases in negotiations. Similarly, the neural network

approach [2, 20] is limited in its interpretability, and its derived results are questionable for the end users.

These extant approaches should resort to adequate and precise information provided by negotiation

parties for decision making. However, uncertain information is often inherent in the dynamic negotiation

environments of real negotiation scenarios. The involvement of uncertain information is an extremely im-

perative but often under-addressed issue in negotiation pricing. Fuzzy set theory [32] is well regarded as a

useful tool for handling uncertain information, and preserving transparency and interpretability in modeling.

Recently, several research efforts [12, 17, 18, 34] have employed this technique to provide decision support

for negotiation pricing. In essence, the majority of the existing approaches either focus on the representation

of involved uncertain attributes by using linguistic terms, or employ expert knowledge to build static fuzzy

rule-based systems for reasoning. Yet, slight changes in negotiation conditions may necessitate substantial

expert interventions to modify the corresponding rules to reflect the new conditions. Moreover, it is difficult

to validate and assess the quality of knowledge captured from experts. Therefore, it is more desirable to

build a fuzzy system (FS) that would automatically learn from historical records to generate the fuzzy rules,

rather than completely depending on external knowledge. Additionally, when the number of influential fac-

tors is large, a standard FS easily suffers from the problem of dimensionality, since the number of required

modeling parameters and fuzzy rules exponentially increases with the number of involved attributes. As

such, dealing with uncertain information within negotiation pricing is of particular interest to researchers

and practitioners. Given the different features (e.g., dimensionality and data coverage) of the available his-

torical dataset, choosing the most appropriate FSs is another crucial task faced by the end users of decision

support systems (DSSs).

In an effort to remedy these pressing issues and challenges, this study substantially extends the initial

work of [8], and proposes a systematic and learning approach to provide decision support for negotiation

pricing through FS theory. In essence, this study concerns bilateral negations on the price, and considers the

negotiation pricing problem particularly from the seller’s point of view to provide intelligent decision support

for pricing managers. Given a set of historical records, mathematical relationships between influential

factors and the proposed price will be built by both learning from the data itself and integrating expert

knowledge. It is believed that the proposed model can be leveraged to better predict the will-to-pay and

other reference prices (e.g., reservation price, target price, and initial price) for unforeseeable transactions.

Beyond the simplified FS with a single input and a single output module (SFS-SISOM) that has been

presented in [8], this work employs the hierarchical fuzzy system (HFS) approach, which is effective for

tackling the dimensionality problem to build predictive models for negotiation pricing. The performances

of three approaches (i.e., standard FS, SFS-SISOM, and HFS) are further compared and discussed from
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different perspectives, including interpretability, accuracy, generality, computational cost, and applicability.

Moreover, a prototype of an intelligent DSS for negotiation pricing is designed and developed with an

integration of these three fuzzy approaches. The IT artifact provides substantial potential and flexibility for

end users to choose the most suitable model for the existing negotiation pricing problem.

In the general context of DSS, it is worth distinguishing the features of the proposed negotiation pricing

DSS. Most extant studies have been devoted to finding, from a set of known feasible decisions, the best

decision to fit with the given set of decision criteria or maximizing the known utility functions. Therefore,

these studies can be regarded as DSS with complete and certain information, and the dominant approaches

in DSS are decision analysis, ranking, and optimization methods. For the negotiation pricing DSS, however,

the situation is very different because the best decision is attainable, and it is the highest price a customer is

willing to pay. Yet, the actual problem is that the highest willing-to-pay price is unknown. Therefore, this

type of decision-making problem requires DSS with uncertain information. As the distinguishing feature

here is the information’s uncertainty, the dominant approaches in most existing DSS are no longer applicable

and a new approach is needed.

This paper is organized as follows: Section 2 reviews the related work of negotiation pricing decision

support, and introduces the HFS and its challenges. In Section 3, a systematic approach employing three

different types of FS is proposed and presented to provide decision support for intelligent negotiation pricing.

The applicability and utility of the proposed approach is demonstrated and tested against three datasets in

Section 4, and the derived results are compared and discussed in Section 5. In Section 6, a prototype system

is developed and presented to provide a proof-of-concept for the proposed work. The final section concludes

this paper and suggests further work directions.

2. Related work

2.1. Negotiation pricing decision support

Negotiation is a crucial activity in business, and is a complex, time consuming, and iterative process

which might involve intensive information exchange and processing. In most business negotiations, price is

the most important attribute. According to utility theory, in a multi-issue negotiation problems, a utility

function can be employed to model price, such that multi-criteria can be converted and evaluated by one

dimension [13]. Negotiation pricing aims to identify a mutually beneficial price for both seller and buyer.

This can often be achieved by iterative one-to-one interactions. An effective negotiation pricing DSS may

offer many benefits, such as maximizing the company’s profitability, maintaining good customer relations,

balancing supply and demand, and improving inventory management. Much work has been done recently

on negotiation pricing decision support in the areas of influential factor identification, modeling negotiation
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behavior, user utility elicitation, and price prediction by employing various techniques. A summary of recent

works on decision support for negotiation pricing is presented in Table 1.

Table 1: Review of literature drawing on negotiation pricing decision support

Author(s) & Year Method(s) Application domain and
datasets

Aims and results

Giacomazzi et al. [9] (2012) Game-theoretical
approach

Simulated dataset in
broadband wireless access

A bilateral negotiation algorithm is proposed to iden-
tify the price of the wireless bandwidth services.

Zhao and Wang [34] (2015) Game-theoretical
approach

Simulated dataset This work investigates the pricing problem and ser-
vice decisions in a supply chain under fuzzy uncer-
tainty conditions. Expected value models are pre-
sented to identify the optimal pricing and service
strategies under three different scenarios.

Carbonneau et al. [2] (2008) Neural networks Data obtained from con-
ducting bilateral negotia-
tion experiments in the In-
spire system

This work presents a neural network approach to es-
timate the opponents’ responses in negotiations.

Chan et al. [4] (2011) Customer segmentation
& expert systems (gen-
erate pricing rules by
experts) & empirical
analysis

Computers and peripher-
als online shop

This work applies customer segmentation, and of-
fers more price discounts to more valuable customers.
The experiment results reveal that the use of dif-
ferential pricing and promotion strategies can im-
prove the total sales without greatly reducing the
company’s revenues.

Lee et al. [15] (2012) Case based reasoning &
fuzzy cognitive map

Simulation experiments This paper proposes an agent-based mobile negotia-
tion framework for personalized pricing of last min-
utes theater tickets whose values are dependent on
the time remaining until the performance and the
locations of potential customers.

Moosmayer et al. [20] (2013) Three layer neural net-
work & questionnaire
to collect data

Business-to-business con-
texts

This work explores the importances and signifi-
cance of the influential factors of negotiation pric-
ing. The obtained order of significance is: target
price, initial price, walk-away price and the size of
the relationships.

Wilken et al. [30] (2010) Empirical method Questionnaire survey This work presents how pricing managers can influ-
ence salespeople’s pricing behaviors through infor-
mation control. A theoretical model is proposed and
tested against the collected dataset.

Kolomvatsos et al. [12] (2014) Fuzzy inference Simulation experiments This work proposes a fuzzy logic (FL) based ap-
proach for negotiation decision support for sellers.
Initially, the seller can use FL reasoning to estimate
negotiation time and rounds, and then reason based
on user-defined FL rules to accept/reject decisions.

Lin et al. [17] (2011) Fuzzy expert systems
(user-defined fuzzy
rules)

Internet auction An agent-based price negotiation system is proposed
in this work. Within the system, end users are al-
lowed to customize their negotiation pricing strate-
gies through user pre-defined fuzzy rules.

Lin and Chang [18] (2008) Fuzzy approach and
fixed/flexible quantity
mixed integer program-
ming (MIP) models

Numerical examples This work develops a fuzzy approach to evaluating
buyers. The results are employed to support the or-
der selection and final pricing decisions. The more
valuable buyers receive more discounts.

For identifying and analyzing the underlying relationships between influential factors and the negotia-

tion price, the pioneering work of [10] investigates the relationship between car price and buyer attributes

(e.g., income, race, and gender). Recently, more efforts have been conducted to explore how reference prices

influence the final price in negotiations and analyze their importance (e.g., [1, 13, 20, 21, 22]). The ref-

erence prices can refer to the initial price, participants’ reservation prices (i.e., the walk-away prices), and

participants’ target prices. Having recognized the importance of these reference prices, some works aim
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to employ both parties’ references prices to accelerate and improve the negotiation process. A common

approach is to require both the buyer and the seller to report their reference prices to a third-party before

negotiations. If the zone of potential agreement is empty, the negotiation will not be launched (e.g., [13]). A

classic approach to model the negotiation behavior of participants is the well-known GT, which emphasizes

the interactions between buyers and sellers, and has been widely applied in bargaining problems [9, 24, 34].

Some of these game-theoretical models often assume that participants would behave rationally and strate-

gically to optimize their negotiation outcome based on symmetrically available information. However, such

assumptions are difficult to achieve in real scenarios, and limit the applicability of GT approaches for solving

realistic negotiation problems. In principle, GT is a utility-based approach that relies on a mathematical

concept of optimal convergence where both parties’ utility functions are defined and optimized. However,

the assessment of utility functions is a time-consuming and error-prone process.

The above approaches mainly rely on adequate and precise information for negotiation pricing decision

support. In recent years, researchers have become increasingly recognizant of the importance of the uncertain

information inherent in dynamic negotiation environments. For instance, it is not easy to precisely measure

certain influential factors of negotiation pricing, such as customer values, customer’s knowledge about the

product, and the degree of product popularity. In literature, FSs have been widely regarded as appropriate

tools for handling uncertain information, and they have been employed to deal with the negotiation pricing

problem [12, 17, 18, 34]. The majority of the existing systems generally either employs linguistic terms to

represent and fuzzify the involved uncertain attributes, or rely on expert knowledge and/or a static strategy

to generate decision-making rules. However, such expert-defined and static fuzzy rules are rather limited.

It has been reported in [26] that only when the problem domain is certain, small, and loosely coupled, can

the knowledge be captured through manual methods such as interviews and observations. Also, these static

fuzzy rules are inefficient to response the changes of negotiation conditions.

To sum up, providing efficient and intelligent decision support for negotiation pricing is not an easy

task. This is evident in the aforementioned drawbacks and challenges of existing approaches. Applying

computational intelligent methods to support negotiation pricing decision making is gaining increased inter-

est. In particular, the approach, which employs computational intelligence and soft computing to discover

negotiation pricing patterns and behaviors from historical data and human knowledge, seems appropriate

to overcome the existing limitations and handle the problem at hand.

2.2. Hierarchical fuzzy systems

The hierarchical fuzzy system (HFS) was firstly proposed to control a steam generator’s drum level [23].

It has been proved that the HFS is capable of approximating any non-linear function on a compact set to

arbitrary accuracy [29]. As such, HFS has been applied, together with other machine learning techniques,

to a variety of application areas (e.g., [14, 16, 19]). Besides its universal approximation, HFS is also capable
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of relieving the high-dimensional problem by reducing the number of required fuzzy rules [11, 29]. More

specifically, a special case of an incremental hierarchical structure [5] and the Takagi-Sugeno-Kang (TSK)

FS [25] was proposed in [29], and has been proved that the number of required fuzzy rules in HFS increases

linearly with the number of involved input attributes, rather than exponential as in a standard FS. However,

since the THEN part of TSK FS is a polynomial of the input attributes, more parameters are needed to

achieve a good universal approximation capability. In [11], the outputs of the lower level sub-FSs are fed as

the THEN part into the connected higher level sub-FS, such that more parameters are required to compute

the THEN part of each sub-FS. Since both the above methods move the dimensional complexity of fuzzy

rules from the IF part to the THEN part, the proposed hierarchical structures in [11, 29] still suffer from

the curse of dimensionality in terms of the number of parameters.

To overcome the parameter dimensionality problems and enhance the transparency and interpretability,

a standard FS is used in [33] to analyze the universal approximation of HFS. The results show that the

HFS is superior to a standard FS by using fewer parameters and fuzzy rules in terms of achieving the same

approximation accuracy. Hence, the proposed HFS in [33] is employed in this work. Unlike a standard FS,

which uses a flat high-dimensional FS to model the given problem, the underlying mechanism of HFS is to

group several low-dimensional sub-FSs (in the form of a standard FS) in a hierarchical manner to model the

problem. A general structure of an HFS consists of several levels that jointly contribute to computing the

final output. Each level can consist of sub-FSs and/or original input attributes. In general, the lowest level’s

sub-FSs receive the original input attributes, and then produce the outputs that feed to their upper level.

Note that, the sub-FSs in the upper level not only can receive the outputs from its lower level sub-FSs, but

also the original input attributes. The outputs from the same level’s sub-FSs are then propagated as inputs

to the upper level sub-FSs, until they reach the highest level to derive the final output.

It has been attested theoretically that any continuous function with a natural hierarchical structure can

be modelled by HFSs with fewer fuzzy rules and parameters [33]. This indicates that the task can be divided

into several sub-tasks, so it is easier to construct a matching hierarchical structure for the problem if it has a

natural hierarchical structure. As such, it is conceived that HFSs are more suitable and effective to construct

the system with a natural hierarchical structure. For the problem at hand, the pricing manager’s advice and

experience can be applied to decompose the influential factors into several categories. Figure 1 illustrates

a possible way to group the sample influential factors. As depicted in Figure 1, a natural hierarchical

structure exists in the negotiation pricing problem and the influential factors can be structurally classified.

The sub-FSs in this hierarchical structure produce meaningful intermediate variables, such as customer-

related, product-related, service-related, and company-related factors. The hierarchical structure can help

pricing managers make a better decision, especially when the number of influential factors is large. The

HFS aggregates the common influential factors into the same sub-FS, and generates a lower number of

meaningful intermediate attributes. In so doing, the generated top-level fuzzy rules are more interpretable
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by pricing managers. Note that there is no supporting theory behind the classification of influential factors

for price negotiation in the current work. The classification of influential factors is actually case driven, and

it relies on expert knowledge to construct the hierarchical structure, rather than automatically generating

the structure from any classification theory.
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Figure 1: The factors influencing negotiation pricing

3. The proposed approach

Fuzzy set theory has become an increasingly prevalent methodology for representing and dealing with

uncertain information, and has been successfully applied to many IT contexts, such as control engineering,

soft computing, and intelligent DSSs [6, 7]. The merits of utilizing fuzzy sets for representing subjective

expertise/knowledge, handling uncertainty, and modeling reasoning processes have been widely discussed and

verified [31]. This study proposes a systematic and learning approach based on FSs to support negotiation

pricing. One of the major contributions of this study is shedding light on investigating the features of

three different types of FSs, namely standard FS, SFS-SISOM, and HFS, especially on their applicabilities

in handling different negotiation pricing problems. As illustrated in Figure 2, the proposed approach is a

data-driven method that aims to learn from historical transactions. These three types of FSs are thereby

integrated into a single prototype system for pricing managers. This section presents the mathematical

models of these FSs, as well as their associated learning algorithms. Since the standard FS and the SFS-

SISOM have been reported in [8], this paper places a particular focus on the technical details of the HFS.
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This study advances the understanding of the bilateral negotiation which involves the one-to-one pricing

problem. The model aims to offer the right price to the right customer. Suppose that a series of influential

factors is X = (x1, · · · , xn), and the offered price is y; then the given problem is to build the mathematical

relationship between price y and the vector of influencing factors X. So it is denoted as:

y = P (X) = P (x1, · · · , xn) (1)

If the relationship P (X) can be learned from historical data, then for each new customer, the right nego-

tiation price can be estimated by using P (X) based on this customer’s values of the influential factors. As

uncertainties are inherent in negotiation pricing, they may exist in the measure of influential factors, and/or

the relationships between influential factors and the proposed price. Thus an FS approach becomes suitable

and useful herein.
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Figure 2: The proposed approach for negotiation pricing decision support

Note that the current study employs expert knowledge to manually group the input attributes in the

HFS. It is possible to develop algorithms to allow for more automatic grouping of the input attributes,

which may improve the prediction accuracy in some cases. Also, clustering is another plausible and useful

approach to grouping the input attributes. One main reason for utilizing the manual grouping of the input

attributes is due to the consideration of the application. Since most of the automatic grouping algorithms
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are driven by historical data, they are likely to lead to less relevant attributes being selected in the same

group. Consequently, the intermediate variables will become meaningless and the resulting HFS will lose

its interpretability. For example, to consider a DSS for house negotiation pricing, if the floor number of

the apartment and local crime rate are classified in the same group by an algorithm, the corresponding

intermediate variables will not be meaningful and the resulting HFS will just be a numerical model. On

the other hand, by allowing a pricing manager to manually group input attributes, he/she may select the

floor number and condition of an apartment in the same group, and include crime rate and closeness to

the shopping center in the same group. In this manner, the corresponding intermediate variables can be

regarded as the house facility index and location index, which are meaningful. Further, the resulting HFS

will show the impacts of the house facility index and location index on the price of an apartment. As such,

the manual grouping of input attributes is very useful from an application point of view. For this reason, it

is perhaps a better choice than an algorithm grouping, since it enables a user to build a negotiation pricing

model that fits his/her thinking and ensures interpretability and understandability.

3.1. Standard fuzzy system

A MISO standard FS (i.e., f(X)) builds a mathematical relationship between n input variables (xj ∈

Uj(j = 1, 2, · · · , n), and Uj ⊂ R) and one output variable (y ∈ V, and V ⊂ R). Each variable consists of

several fuzzy sets, in the inference process, fuzzy intersection operators are employed on a full combination of

all input variables. Consequently, given n input variables , its complete fuzzy rule base requiresK =
∏n

j=1 Nj

fuzzy rules, where Nj is the number of fuzzy sets of the jth input variable. In order to enhance the

model’s transparency and reduce the number of required fuzzy rules and modeling parameters, the triangular

membership functions that used in [8] and the center-average defuzzifier are employed in all three types of

FSs in this study. Given a historical transaction with numeric inputs X = (x1, x2, · · · , xn) and the output

ŷ, the standard FS can be derived and represented as:

ŷ = f(X) =
∑

i1···in∈I

(

n
∏

j=1

µj
ij
(xj)

)

yi1···in (2)

where I is the index set, and it is represented as I = {i1, · · · , in|ij = 1, 2, · · · , Nj ; j = 1, 2, · · · , n}, i1i2 · · · in

is the index of fuzzy rule, and µj
ij
(xj) is the membership degree of the ithj fuzzy set in the jth input variable

fired by the input value xj .

In Equation (2), the parameters yi1···in are supposed to be learned through a learning algorithm. The

recursive least square (RLS) learning algorithm [28] is used in both standard FSs and SFS-SISOMs, technical

details for implementing the RLS can be found in [8]. To start the learning process, a disturbance parameter

(i.e., σ) needs to be identified, and it is often a large number (e.g., 100000). This parameter is introduced
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to tune and balance the fitting to the historical data and to the initial parameters. During the learning

process, the parameters are iteratively updated with the aim to minimize the sum of errors. In the end,

the recursive learning process terminates either by achieving a satisfied error rate (i.e., ε) or reaching the

maximum iteration number (i.e., T ).

3.2. SFS-SISOM

To address the problem of high dimensionality in standard FSs, a novel SFS-SISOM has been proposed

in [8]. Rather than modeling a complete combination of all input variables and the output variable at a

time, the SFS-SISOM breaks the complex model into several simple sub-models. The SFS-SISOM builds the

linear relationship between the individual input variable and the output variable, respectively. Therefore, a

fuzzy rule in the SFS-SISOM only contains one input variable and the output variable, and it only requires

S =
∑n

j=1 Nj (i.e., Nj is the number of fuzzy sets in the jth input variable) fuzzy rules to cover the whole

input space.

Mathematically speaking, the SFS-SISOM is formed by several SISO standard FSs, and the outputs of

such SISO FSs contribute to the final output of the SFS-SISOM by carrying different important weights.

Thus, the SFS-SISOM can be derived and represented as:

ŷ =

n
∑

j=1

wj

( Nj
∑

ij=1

µj
ij
(xj)y

j
ij

)

=

n
∑

j=1

Nj
∑

ij=1

wjy
j
ij
µj
ij
(xj) =

n
∑

j=1

Nj
∑

ij=1

Cj
ij
µj
ij
(xj), (3)

where wj represents the important weight of the jth input variable/SISO standard FS, and yjij is the central

point of the corresponding fuzzy set of the output variable when given the ithj fuzzy set in the jth input

variable, xj . These two parameters form a new parameter Cj
ij

which is supposed to be learned from the

RLS learning algorithm. The main steps of RLS are similar to the standard FS, with the main differences

exist in the construction of input matrix, parameter vector, and output vector.

3.3. Hierarchical fuzzy system

3.3.1. The model of the hierarchical fuzzy system

The mathematical model of the standard FS has been introduced in Section 3.1, and the HFS con-

sists of several standard FSs in a hierarchical manner. As shown in Figure 3, the ath sub-FS in the hth

level (i.e., SFSh
a ) contains several intermediate attributes (i.e., yh,a1 · · · , yh,anh,a

), and original attributes (i.e.,

xh,a
1 , · · · , xh,a

mh,a
). In this model, x refers to the original input attributes, while y refers to the output of the

sub-FS. The output of SFSh
a , denoted as oh,a, is used as an intermediate attribute (i.e., yh+1,b

1 ) of its upper

level’s standard FS, so that the SFSh
a can be represented as:

oh,a = yh+1,b
1 = fh,a(y

h,a
1 , · · · , yh,anh,a

, xh,a
1 , · · · , xh,a

mh,a
)
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=

∑

j1j2···jnh,a
i1i2···imh,a

yh,aj1j2···jnh,a
i1i2···imh,a

∏nh,a

k=1 µh,a,k
jk

(yh,ak )
∏mh,a

k=1 wh,a,k
ik

(xh,a
k )

∑

j1j2···jnh,a
i1i2···imh,a

∏nh,a

k=1 µh,a,k
jk

(yh,ak )
∏mh,a

k=1 wh,a,k
ik

(xh,a
k )

. (4)
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1
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!oh+1,b
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Figure 3: Mathematical model of HFS

In Equation (4), nh,a is the number of intermediate attributes of SFSh
a and mh,a represents the number

of the SFSh
a ’s original input attributes. yh,anh,a

is the output of the sub-FS in the h− 1 level, and it is used

as the nth
h,a intermediate input attribute of the SFSh

a ; and xh,a
mh,a

is the mth
h,a original input attribute of the

SFSh
a . Also, j1j2 · · · jnh,a

i1i2 · · · imh,a
is the index of fuzzy rules in the SFSh

a , and µh,a,k
jk

(yh,ak ) stands for the

corresponding output of the jthk fuzzy set of the kth intermediate attribute of the SFSh
a , while wh,a,k

ik
(xh,a

k )

is the output of the ithk fuzzy set in the kth original input attribute of the SFSh
a .

By employing the triangular membership functions in the HFS, Equation (4) can derive that:

∑

j1j2···jnh,a
i1i2···imh,a

nh,a
∏

k=1

µh,a,k
jk

(yh,ak )

mh,a
∏

k=1

wh,a,k
ik

(xh,a
k ) = 1. (5)

Equation (4) can be rewritten as:

oh,a =
∑

j1j2···jnh,a
i1i2···imh,a

[

nh,a
∏

k=1

µh,a,k
jk

(yh,ak )

mh,a
∏

k=1

wh,a,k
ik

(xh,a
k )

]

yh,aj1j2···jnh,a
i1i2···imh,a

. (6)
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The number of fuzzy rules in the HFS can be represented as:

H =

L
∑

i=1





Si
∑

j=1

(

ni,j
∏

k=1

Nk
i,j

mi,j
∏

k=1

Nk
i,j

)



 (7)

where L is the number of levels in the hierarchical structure and Si is the number of sub-FSs in the ith level.

ni,j and mi,j , respectively, represent the number of intermediate attributes and the number of original input

attributes of the jth sub-FS in the ith level (i.e., SFSi
j). Nk

i,j is the number of fuzzy sets in the kth input

attribute (can be either an intermediate attribute or an original input attribute) of the SFSi
j .

3.3.2. Gradient descent learning algorithm

Different from the standard FS and SFS-SISOM, the HFS employs the gradient descent learning algo-

rithm to learn from historical records in this work. Although RLS is capable of finding the global optima,

it is not applicable to HFS due to the existence of intermediate attributes. Since an HFS consists of several

lower-level sub-FSs, the final output is nonlinearly dependent on the non-top sub-FSs, and the the gradient

descent learning algorithm is employed herein to optimize the HFS’s parameters. The objective function of

the gradient decent algorithm only minimizes the error based on the current data instance (i.e., r):

er =
1

2
[f(Xr)− yr]

2. (8)

In [27], an improved gradient descent algorithm is proposed and it is adapted in this work. This algorithm

aims to minimize the local error by updating the parameters and integrates a normalization step to handle

the intermediate attributes in the HFS. Given an HFS, the final error back propagates from the top level

to the lower levels, and the error derived from the upper level is used to update the parameters of the

neighboring lower level. Assume t is the learning iteration index; the final error of a HFS is written as:

eL,1(t) = oL,1(t)− y(t), (9)

where L is the total number of levels in an HFS, and oL,1(t) is the predicted output of the top-level sub-FS in

the tth learning iteration, while y(t) is the target output provided in the given dataset. Given a hierarchical

structure as shown in Figure 3, the error of SFSh+1
b is propagated to SFSh

a in the following way:

eh,a(t) = eh+1,b(t)×
∂oh+1,b(t)

∂oh,a(t)
. (10)
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For simplicity, the level index (e.g., h and h+ 1) is omitted. Hence, Equation (10) is rewritten as:

ea(t) = eb(t)×
∂ob(t)

∂oa(t)
. (11)

Also, the HFS as shown in Equation (6) can be simplified as:

oa =
∑

j1j2···jna i1i2···ima

[

na
∏

k=1

µa,k
jk

(yak)

ma
∏

k=1

wa,k
ik

(xa
k)

]

yaj1j2···jna i1i2···ima
. (12)

The fuzzy rule index j1j2 · · · jna
i1i2 · · · ima

of the SFSh
a is denoted as Ia, and

∏na

k=1 µ
a,k
jk

(yak)
∏ma

k=1 w
a,k
ik

(xa
k)

is denoted as Aa
Ia
. Therefore, the output of the SFSh

a is represented as:

oa =
∑

Ia

Aa
Ia
yaIa . (13)

Equation (11) can then be represented as:

ea(t) = eb(t)×
∂
∑

Ib
Ab

Ib
(t)ybIb(t)

∂oa(t)

= eb(t)×
∑

Ib

ybIb(t)
∂Ab

Ib
(t)

∂oa(t)
, (14)

in which
∂Ab

Ib
(t)

∂oa(t) =
Ab

Ib
(t)

µ
b,1

j1
(yb

1
,t)

×
∂µ

b,1

j1
(yb

1
,t)

∂oa(t) . As shown in Figure 3, the output of SFSh
a (i.e., oa) is the first

intermediate attribute (i.e., yb1) of SFSh+1
b . In addition, since oa = yb1, Equation (14) can be written as:

∂Ab
Ib
(t)

∂oa(t)
=

Ab
Ib
(t)

µb,1
j1

(oa, t)
×

∂µb,1
j1

(oa, t)

∂oa(t)
. (15)

According to the definition of triangular membership functions, it is derived that:

∂µb,1
j1

(oa, t)

∂oa(t)
=



























1 oa ∈ [cjk−1, cjk ]

−1 oa ∈ [cjk , cjk+1]

0 otherwise.

(16)

where cjk is the central point of the jthk fuzzy set of the kth attribute in SFSb. This results in that the

14



propagated error can be represented as:

ea(t) =



























eb(t)×
∑

Ib

yb
Ib

(t)Ab
Ib

(t)

µ
b,1

j1
(oa,t)

oa ∈ [cjk−1, cjk ]

−eb(t)×
∑

Ib

yb
Ib

(t)Ab
Ib

(t)

µ
b,1

j1
(oa,t)

oa ∈ [cjk , cjk+1]

0 otherwise.

(17)

Given the previous iteration results (e.g., yaIa(t)), the gradient descent learning algorithm iteratively

updates the parameters of the current iteration by:

yaIa(t+ 1) = yaIa(t)− λ×
∂oa(t)

∂yaIa(t)
× ea(t) (18)

where λ is the learning rate parameter, and according to Equation (13),

∂oa(t)

∂yaIa(t)
=

∂(
∑

Ia
Aa

Ia
(t)yaIa(t))

∂yaIa(t)
= Aa

Ia
(t). (19)

Therefore, Equation (18) can be rewritten as:

yaIa(t+ 1) = yaIa(t)− λ×Aa
Ia
(t)× ea(t). (20)

To sum up, according to the mathematical model of the HFS (i.e., Equation (6)) and gradient descent

algorithm (i.e., Equations (17) and (20)), the learning process of the HFS can be described as:

Step 1: Construction of the hierarchical structure

This task involves identifying the number of hierarchical levels, the number of sub-FSs in each level, the

allocation of original input attributes, and the segmentation of the associated input attributes to construct

a sub-FS. This is currently identified by the end user.

Step 2: Initialization of the learning parameters

The initial parameters for each sub-FS (e.g., yh,aIa
(0) for SFSh

a ) can either be initialized by experts or

use default values. These parameters will be iteratively updated in the learning process. Since the gradient

descent learning algorithm may converge to a local optima, the choice of initial parameters becomes essential.

If the initial parameters are close to the global optima, the algorithm stands a good chance of finding the

global optima. Also, the learning rate parameter (i.e., λ) and two termination parameters (i.e., the maximum

number of iteration T , and the error threshold ξ) need to be initialized herein.

Step 3: Update of the parameters by using the recursive gradient descent algorithm

Based on the given initial parameters, calculate the final output of the HFS and the error. After that,

the error is back propagated from the top level to the lowest level by using Equation (17), and the error for
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each sub-FS (e.g., eh,a) can be calculated, respectively. Then apply Equation (20) to update the parameters

for each sub-FS.

Step 4: Normalization of the intermediate parameters

Intermediate attributes are a newly introduced problem in the HFS. In many cases, the intermediate

attributes do not have semantical meanings. Thus, this may result in the universe of discourse of the derived

intermediate attribute being unpredictable and difficult to pre-define. It has been proved in [27] that the

approximation accuracy of the HFS is independent of the definition domain of intermediate attributes.

Therefore, a method is proposed in [27] to overcome this problem by normalizing the domains of intermediate

attributes into [0, 1]. The normalization process can be described as:

yh,aIa
=

yh,aIa
−min(yI)

max(yI)−min(yI)
(21)

where min(yI) is the minimal value of the intermediate attribute outputs within all non-top level sub-FSs,

while max(yI) is the maximum value. This ensures that the value of yh,aIa
always lies within [0, 1].

Step 5: Termination of the learning process

Similar to RLS, the recursive learning terminates either by reaching the maximum iteration number T,

or reaching a predefined error threshold ξ. Calculate the overall error E(t) = 1
2 ×

∑M
r=1(o

L,1
r (t)− yr(t)); if

E(t) < ξ or t > T , the learning terminates. Otherwise, go back to Step 3 with t = t + 1 and set r = 1 to

start a new iteration.

4. Empirical results

4.1. Experimental data

Three negotiation pricing related datasets, which vary from the number of instances to dimensionalities,

were used in this study. A summary of these three datasets are presented in Table 2.

Table 2: Summary of experimental datasets

Dataset No. of
Input At-
tributes

No. of Instances Input Attributes Output Attribute

DS1 - MP3 Player Dataset 4 248 1. Usefulness; 2. Importance; 3.
Budget; 4. Knowledge

Discount

DS2 - Boston House Dataset 11 499 1. Crime; 2. Education; 3. Popula-
tion; 4. Air Quality; 5. Zone Pro-
portion; 6. No. of Rooms; 7. Age; 8.
Tax; 9. Convenience; 10. Distance;
11. Accessibility to Highway

Property value

DS3 - California Dataset 8 20,640 1. Median Income; 2. Housing Me-
dian Age; 3. Total Rooms; 4. Total
Bedrooms; 5. Population; 6. House-
holds; 7. Latitude; 8. Longitude

ln(median house value)
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4.1.1. DS1 - MP3 player dataset

A questionnaire survey was conducted at a major British university to collect this dataset. The question-

naire consists of two parts: Part 1 introduces the background scenario, in which a MP3 company conducts a

promotion to provide potential buyers with customized discounts, with the aim to boost the product sales;

Part 2 contains two questions that capture participants’ demographic attributes and four sets of questions

that are associated with the four influential attributes (i.e., importance, budget, usefulness, and knowledge

about the product) of product purchase. Participants were asked to answer the questions along a five-point

Likert-type scale. Furthermore, if the product was deemed too expensive at its current price, the partic-

ipants were asked to suggest a minimal numeric discount that would persuade them to reconsider of the

purchase, and the specified discount was also regarded as the reservation price for pricing managers. The

questionnaires were sent out by hand or electronically distributed via a mailing list to students and academic

staff at the university. A total of 500 questionnaires were send out and 248 valid responses were returned

and processed for further analysis.

4.1.2. DS2 - Boston House Dataset

This is a publicly available dataset that captures the residential property price for house sales in Boston

in 1976.1 In this dataset, 11 influential factors (see Table 2) were considered when identifying the house

price. Given the house properties, the right negotiation price can be predicted by employing the proposed

models. This dataset, in particular, was chosen to testify to the utility of the proposed approach in handling

relatively high-dimensional problems.

4.1.3. DS3 - California Dataset

This dataset collects house information from the 1990 Census in California, and it is publicly available. 2

The dataset includes all block groups in California and each block group on average includes 1, 425.5 indi-

viduals living in a geographically compact area. The distances among the centroids of each block group as

measured in latitude and longitude were computed. In addition, all the block groups reporting zero entities

for the observed attributes were filtered out. In total, this dataset records 20,640 observations on eight

independent attributes (i.e., median income, housing median age, total rooms, total bedrooms, population,

households, latitude, and longitude) and the dependent variable is ln(median house value). Note that, this

dataset does not report individual house information, as it instead captures the aggregated information for

all block groups.

1http://lib.stat.cmu.edu/datasets/boston
2http://lib.stat.cmu.edu/datasets/houses.zip
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4.2. Experimental results

The selection of initial values of learning parameters is a common problem in literature of machine

learning. In this work, the initializations of learning parameters are mainly determined by the combination

of expertise and pre-experiments with the goal to achieve the optimal prediction results (i.e., cross validation

based on least APE and RMSE). In different FSs, different sets of initial values of learning parameters were

tested in pre-experiments, and only the learning parameters that produce the optimal results are reported.

More specifically, the initializations of the different learning parameters are explained as follows: 1) Error

threshold: in order to monitor the best performance of different FSs, the error threshold is set to be very

small (i.e., 0.01) for all experiments; 2) Number of iterations: within the pre-experiment, how the error

changes with the increase of iterations can be observed and plotted. The iteration parameter that produces

the stable prediction performance is selected; 3) Learning rate: it is taken within the range of [0, 1] to avoid

missing out the optima, as a small value (e.g., 0.02) of learning rate is selected in this work. A set of the

combinations of iteration and learning rate parameters were tested in the pre-experiments; 4) Disturbance

parameter: this parameter is used to construct the disturbance matrix in the RLS learning. As suggested by

[28], a real large number (e.g., 100,000) is often used for the initial value of this parameter. The performances

standard FSs and SFS-SISOMs are quite sensitive to this parameter. Therefore, several pre-experiments

were conducted to select the appropriate disturbance parameter for different FSs.

4.2.1. DS1 - MP3 player dataset

In this experiment, three FSs were all employed to predict diverse situations, which varied in the number

of training/testing instances (i.e., 50, 100, and 248 samples were used in different situations, respectively) and

fuzzy attribute partitions. In the HFS, a hierarchical structure with 2 sub-systems and no free parameters

are employed for all experiments. More specially, Usefulness and importance are grouped to construct a

sub-standard FS, whereas financial capability and knowledge are grouped to construct another standard

FS. The learning rate is set to 0.02 and the error threshold is set to 0.01. The number of iterations for

the standard FS and the SFS-SISOM is set to 100. Since the input matrixes of the SFS-SISOM and the

standard FS are different, the selection of the disturbance parameter (σ) value could be different. In this

study, pre-experiments revealed that the standard FS and SFS-SISOM achieve optimal results when setting

the σ = 9999999 and 99999, respectively. The reason for setting a larger σ for the standard FS is that it

has more parameters, so a smaller 1/σ is needed to weigh down the impact of the initial parameters of the

standard FS model to fit the data better.

The obtained results, as listed in Tables 3 through 5, reveal that all three FSs perform well when

the divided sub-spaces are well covered by training samples. The derived results mirror some interesting

findings: First, the standard FS suffers from the over-fitting problem when there is an insufficient number

of training data samples (e.g., Exp3, Exp10, and Exp12 in Table 3). However, by increasing the number of
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training data samples to include all 248 instances being used, the over-fitting problem for the standard FS

is removed gradually. Second, when the number of training data samples is sufficient to cover the divided

sub-spaces, the standard FS, among the three FSs, performs the best in the sense of goodness of fitting (i.e.,

better accuracy for training data or smaller training error). However, the SFS-SISOM and the HFS both

obtain better testing accuracy (i.e., smaller error for testing data) than the standard FS. This is verified,

respectively, by the Exp1, Exp7, and Exp13 in Tables 3 and 4. Moreover, compared with the HFS, the SFS-

SISOM can obtain similar testing accuracy with fewer fuzzy rules and a lower number of learning iterations.

Thus, it can be concluded that the SFS-SISOM performs the best in this experiment.

Table 3: Results of using the standard FS in the MP3 player dataset [8]

Experiment Training dataset(#) Testing dataset(#) # of
rules

Partitions Training
APE(%)

Training
RMSE

Testing
APE(%)

Testing
RMSE

Running
time
(second)

Exp1 31 - 100 (70) 1 - 30 (30) 36 1,2,1,2 6.6283 1.1305 15.7317 1.7482 1.81
Exp2 1 - 70 (70) 71 - 100 (30) 36 1,2,1,2 6.5245 0.7582 14.7936 2.4849 1.75
Exp3 1 - 40 (40) 41 - 100 (60) 36 1,2,1,2 1.6495 0.1739 80.3334 7.8112 1.30
Exp4 11 - 50 (40) 1 - 10 (10) 36 1,2,1,2 3.2771 0.3826 21.4055 2.5766 1.28
Exp5 21 - 50 (30) 1 - 20 (20) 36 1,2,1,2 1.1137 0.2591 18.9492 2.8863 1.13
Exp6 1 - 5; 21 - 50 (35) 6 - 20 (15) 36 1,2,1,2 1.2440 0.2680 21.3402 3.4829 1.20
Exp7 51 - 248 (198) 1 - 50 (50) 36 1,2,1,2 8.3482 1.2396 12.6061 1.2643 3.73
Exp8 51 - 248 (198) 1 - 50 (50) 144 2,3,2,3 3.4679 0.8347 42.5941 3.2094 107.39
Exp9 1 - 30; 91 - 248 (188) 31 - 90 (60) 36 1,2,1,2 8.0517 1.0080 14.5664 2.0378 2.08
Exp10 1 - 30; 91 - 248 (188) 31 - 90 (60) 144 2,3,2,3 2.5822 0.3812 63.6023 12.2093 101.11
Exp11 1 - 120 (120) 121 - 248 (128) 36 1,2,1,2 8.6280 1.1464 12.5673 1.7509 2.57
Exp12 1 - 120 (120) 121 - 248 (128) 144 2,3,2,3 1.7404 0.2948 24.8623 4.6594 111.01
Exp13 1 - 150; 241 - 248 (158) 151 - 240 (90) 36 1,2,1,2 9.1615 1.2624 10.2230 1.4241 3.11
Exp14 1 - 150; 241 - 248 (158) 151 - 240 (90) 144 2,3,2,3 3.3248 0.7825 24.8890 4.9452 120.21

Table 4: Results of using the SFS-SISOM in the MP3 player dataset [8]

Experiment Training dataset(#) Testing dataset(#) # of
rules

Partitions Training
APE(%)

Training
RMSE

Testing
APE(%)

Testing
RMSE

Running
time
(second)

Exp1 31 - 100 (70) 1 - 30 (30) 10 1,2,1,2 16.2000 1.7012 12.3035 1.2875 0.47
Exp2 1 - 70 (70) 71 - 100 (30) 10 1,2,1,2 16.2004 1.6322 12.5001 1.5594 0.42
Exp3 1 - 40 (40) 41 - 100 (60) 10 1,2,1,2 12.7127 1.0876 16.1389 1.9536 0.29
Exp4 11 - 50 (40) 1 - 10 (10) 10 1,2,1,2 16.6560 1.3656 6.1107 1.0769 0.22
Exp5 21 - 50 (30) 1 - 20 (20) 10 1,2,1,2 21.3886 1.4440 7.4940 1.1040 0.19
Exp6 1 - 5; 21 - 50 (35) 6 - 20 (15) 10 1,2,1,2 20.4390 1.3806 8.5950 1.1521 0.20
Exp7 51 - 248 (198) 1 - 50 (50) 10 1,2,1,2 9.8862 1.3894 12.1184 1.4428 0.77
Exp8 51 - 248 (198) 1 - 50 (50) 14 2,3,2,3 7.9622 1.2033 13.0766 1.2628 0.94
Exp9 1 - 30; 91 - 248 (188) 31 - 90 (60) 10 1,2,1,2 9.7417 1.2073 11.7267 1.8978 0.77
Exp10 1 - 30; 91 - 248 (188) 31 - 90 (60) 14 2,3,2,3 7.8455 0.9967 10.8846 1.7643 0.88
Exp11 1 - 120 (120) 121 - 248 (128) 10 1,2,1,2 13.4239 1.5468 10.4996 1.3152 0.61
Exp12 1 - 120 (120) 121 - 248 (128) 14 2,3,2,3 10.7789 1.3717 8.5867 1.2005 0.74
Exp13 1 - 150; 241 - 248 (158) 151 - 240 (90) 10 1,2,1,2 11.1983 1.4857 9.1089 1.3065 0.66
Exp14 1 - 150; 241 - 248 (158) 151 - 240 (90) 14 2,3,2,3 10.1013 1.3206 7.6733 1.0936 0.88

4.2.2. DS2 - Boston house dataset

In this dataset, there were 499 historical samples with 11 input attributes. For such a relatively high-

dimensional but limited sample dataset, the standard FS was not usable as it requires 211 = 2, 048 fuzzy

rules, even when applying the simplest partition in which each attribute contains only two fuzzy sets.
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Table 5: Results of using the HFS in the MP3 player dataset

Experiment Training dataset(#) Testing dataset(#) # of
rules

Partitions Iterations Training
APE(%)

Training
RMSE

Testing
APE(%)

Testing
RMSE

Running
time
(second)

Exp1 31 - 100 (70) 1 - 30 (30) 16 1 2; 1 2; 1 1 10000 9.9741 0.9404 12.7680 1.8076 2.12
Exp2 31 - 100 (70) 1 - 30 (30) 21 1 2; 1 2; 2 2 6000 10.8963 1.7663 11.7490 1.6266 1.36
Exp3 31 - 100 (70) 1 - 30 (30) 28 1 2; 1 2; 3 3 10000 10.4902 1.5118 12.8370 1.8318 2.06
Exp4 1 - 70 (70) 71 - 100 (30) 16 1 2; 1 2; 1 1 10000 10.1038 1.2613 12.6070 1.8312 2.06
Exp5 1 - 70 (70) 71 - 100 (30) 21 1 2; 1 2; 2 2 10000 9.5615 1.1274 12.2300 1.9679 2.08
Exp6 1 - 70 (70) 71 - 100 (30) 28 1 2; 1 2; 3 3 10000 10.5901 1.2619 12.8150 1.9052 2.03
Exp7 1 - 40 (40) 41 - 100 (60) 16 1 2; 1 2; 1 1 10000 10.3302 1.5111 12.5770 1.8197 1.24
Exp8 1 - 40 (40) 41 - 100 (60) 21 1 2; 1 2; 2 2 10000 11.4601 1.0948 14.9430 2.9411 1.27
Exp9 1 - 40 (40) 41 - 100 (60) 28 1 2; 1 2; 3 3 10000 13.8669 1.7309 25.7410 5.6944 1.26
Exp10 11 - 50 (40) 1 - 10 (10) 16 1 2; 1 2; 1 1 10000 11.2670 1.2055 6.6900 0.7983 1.27
Exp11 11 - 50 (40) 1 - 10 (10) 16 1 2; 1 2; 1 1 3000 14.4835 1.4092 10.6896 1.6482 0.53
Exp12 11 - 50 (40) 1 - 10 (10) 21 1 2; 1 2; 2 2 10000 16.1273 1.6353 12.9130 1.6091 1.29
Exp13 11 - 50 (40) 1 - 10 (10) 28 1 2; 1 2; 3 3 10000 11.8673 1.0891 15.6870 3.7580 1.31
Exp14 21 - 50 (30) 1 - 20 (20) 16 1 2; 1 2; 1 1 10000 13.7768 1.1744 8.7620 1.2906 0.99
Exp15 21 - 50 (30) 1 - 20 (20) 16 1 2; 1 2; 1 1 3000 13.4583 1.3571 12.3371 1.8762 0.45
Exp16 21 - 50 (30) 1 - 20 (20) 21 1 2; 1 2; 2 2 10000 12.0021 1.0689 13.0840 2.2542 1.02
Exp17 21 - 50 (30) 1 - 20 (20) 28 1 2; 1 2; 3 3 10000 10.8501 0.9221 14.5210 4.8472 1.04
Exp18 51 - 248 (198) 1 - 50 (50) 16 1 2; 1 2; 1 1 10000 8.8865 1.3633 12.5860 1.4644 5.40
Exp19 51 - 248 (198) 1 - 50 (50) 22 2 2; 2 2; 1 1 6000 8.4084 1.3067 13.1501 1.3202 3,40
Exp20 51 - 248 (198) 1 - 50 (50) 21 1 2; 1 2; 2 2 10000 8.5953 1.3225 13.9480 1.4482 5,38
Exp21 51 - 248 (198) 1 - 50 (50) 28 1 2; 1 2; 3 3 10000 8.9526 1.3174 15.3150 1.3774 5.47
Exp22 1 - 30; 91 - 248 (188) 31 - 90 (60) 16 1 2; 1 2; 1 1 6000 9.1456 1.2401 11.1345 1.8376 3.14
Exp23 1 - 30; 91 - 248 (188) 31 - 90 (60) 22 2 2; 2 2; 1 1 6000 8.6851 1.1210 12.7091 1.9002 3.30
Exp24 1 - 30; 91 - 248 (188) 31 - 90 (60) 21 1 2; 1 2; 2 2 6000 8.0572 1.1163 15.2720 1.8671 3.20
Exp25 1 - 30; 91 - 248 (188) 31 - 90 (60) 28 1 2; 1 2; 3 3 6000 8.1971 1.1077 16.0640 1.9446 3.21
Exp26 1 - 120 (120) 121 - 248 (128) 16 1 2; 1 2; 1 1 6000 10.6254 1.5046 9.9050 1.6352 2.11
Exp27 1 - 120 (120) 121 - 248 (128) 22 2 2; 2 2; 1 1 6000 10.7058 1.4687 9.9592 1.6921 2.15
Exp28 1 - 120 (120) 121 - 248 (128) 21 1 2; 1 2; 2 2 6000 11.4216 1.7332 11.6220 2.0507 2.12
Exp29 1 - 120 (120) 121 - 248 (128) 28 1 2; 1 2; 3 3 6000 10.5594 1.4292 11.5960 1.8939 2.10
Exp30 1 - 150; 241 - 248 (158) 151 - 240 (90) 16 1 2; 1 2; 1 1 6000 10.2264 1.4780 9.9200 1.5209 2.70
Exp31 1 - 150; 241 - 248 (158) 151 - 240 (90) 22 2 2; 2 2; 1 1 6000 9.9087 1.4225 9.1745 1.3747 2.74
Exp32 1 - 150; 241 - 248 (158) 151 - 240 (90) 21 1 2; 1 2; 2 2 6000 10.6577 1.5578 10.1140 1.5967 2.69
Exp33 1 - 150; 241 - 248 (158) 151 - 240 (90) 28 1 2; 1 2; 3 3 6000 10.3626 1.5206 10.4050 1.6123 2.74

Therefore, only the SFS-SISOM and the HFS were applied in this experiment. The available dataset was

randomly decomposed into training/testing datasets, in which 414 samples were randomly selected to form

the training dataset and the other 85 records were used as the testing dataset. A natural hierarchical

structure (as depicted in Figure 4) is associated with the given problem. Three meaningful intermediate

attributes, namely living environments, house property, and convenience, construct the top level standard

FS. Hence, the experiments in HFS all employ the same hierarchical structure which consists of three sub-

systems with no free parameters. In addition, the learning rate is set to 0.02 and error threshold is set

to 0.01 for all experiment in the HFS. In the SFS-SISOM, the disturbance parameter is set to be 99, 999

and the number of iterations is set to 100. The pre-experiments show that the obtained results are very

similar when employing different number of iterations (i.e., 10, 100, and 1000), therefore, only the results of

running the 100 iterations are reported. The results of using the SFS-SISOM and the HFS, together with the

employed parameters, are reported in Tables 6 and 7. Note that, in Table 7, when the partition parameter

is set to “n”, this indicates that the original and intermediate attributes were all divided into n sub-spaces

(e.g., Exp2); when the partition parameter is set to “n,m”, the original attributes were partitioned into n

sub-spaces, and the intermediate attributes were divided into m sub-spaces (e.g., Exp1 and Exp3).

It can be concluded from the experimental results that both the SFS-SISOM and the HFS performed

well in this dataset, and can be used as effective decision support models. Both approaches achieved
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approximately 84%− 88% prediction accuracy in the testing dataset. In general, the HFS performs slightly

better than the SFS-SISOM in terms of predictability (i.e., Testing APE(%)). On the other hand, the

standard FS was incapable of dealing with this dataset due to the curse of dimensionality.

Table 6: Results of using the SFS-SISOM in the Boston house dataset [8]

Experiment # of sub-spaces in Attributes # of
rules

Training
APE(%)

Training
RMSE

Testing
APE(%)

Testing
RMSE

Running
time
(second)

1 2 3 4 5 6 7 8 9 10 11

Exp1 2 2 3 2 3 2 3 2 2 2 2 25 12.4817 3.6516 14.3455 5.3367 6.53
Exp2 3 3 5 3 5 3 5 3 3 3 3 90 12.4064 3.3852 13.1579 5.1074 13.22
Exp3 3 3 3 3 3 3 3 3 3 3 3 44 12.0596 3.6064 14.0818 5.1709 9.98
Exp4 1 1 2 1 2 1 2 1 1 1 1 25 13.0903 3.7723 13.1299 5.2278 3.62
Exp5 2 2 2 2 2 2 2 2 2 2 2 33 14.9134 4.1978 16.5419 6.0427 5.53

Figure 4: Hierarchical structure for Boston house dataset

Table 7: Results of using the HFS in the Boston house dataset

Experiment # of
rules

Partitions Iterations Training
APE(%)

Training
RMSE

Testing
APE(%)

Testing
RMSE

Running
time
(second)

Exp1 253 2,3 6000 13.6606 4.1415 12.8858 5.5013 66.93
Exp2 48 1 6000 15.3197 4.5951 15.2067 6.7762 59.48
Exp3 104 1,3 6000 14.0024 4.8466 13.4519 6.5981 61.96
Exp4 116 1 3 1 3; 1 2 1 2; 1 1 1; 1 1 1 6000 12.2817 3.6230 13.9064 5.9200 60.25
Exp5 212 1 3 1 3; 1 2 1 2; 3 3 3; 3 3 2 6000 14.1919 3.6930 13.7923 5.5817 63.53
Exp6 212 1 3 1 3; 1 2 1 2; 3 3 3; 3 3 2 3000 13.1382 3.4611 14.4630 6.0849 32.92

4.2.3. DS3 - California Dataset

In this dataset, 20,640 observations were randomly partitioned into two subsets, in which 70% (i.e.,

14,448) were used for training and 30% (i.e., 6,192) were used for testing. The eight input attributes can

be naturally grouped into two standard sub-FSs: the median income, population and households reflect the

block group properties, while the housing median age, total rooms, total bedrooms, latitude, and longitude

represent the house properties. Then these two meaningful intermediate attributes (i.e., block group proper-

ties and the house properties) construct the top-level standard FS. Thus, the sub-FSs construction setting
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is: 1 5 6;2 3 4 7 8. The experiments of the HFS in this dataset all employ the above hierarchical structure

that consists of two sub-FSs with no free parameters. In addition, the learning parameters of the HFS were

set to: learning rate = 0.02, error threshold = 0.01, and iterations = 1000. In the standard FS, in order to

obtain the result within an hour, the number of iteration is set to 1 because the computational cost is very

high (see more details in Section 5.4). The results of using the three FSs, together with the used parameters,

are reported in Tables 8 through 10.

Table 8: Results of using the standard FS in the California dataset

Experiment # of
rules

Partitions Disturbance
parameter

Training
APE(%)

Training
RMSE

Testing
APE(%)

Testing
RMSE

Running
time
(second)

Exp1 256 1,1,1,1,1,1,1,1 999 1.9407 0.3120 1.9653 0.3156 1,013.79
Exp2 256 1,1,1,1,1,1,1,1 99999 1.8963 0.3057 1.9432 0.3322 511.17
Exp3 256 1,1,1,1,1,1,1,1 9999999 14.6492 8.1259 15.5764 10.5383 543.34
Exp4 384 2,1,1,1,1,1,1,1 999 1.8679 0.3022 1.8922 0.3040 2,754.45
Exp5 384 2,1,1,1,1,1,1,1 99999 1.8248 0.2963 1.8728 0.3185 2,785.24

The results reveal that in general all three FSs can achieve very good performances in terms of training

and testing prediction accuracy (i.e., 96.3% - 98.2%). However, the standard FS and the SFS-SISOM are

quite sensitive to the disturbance parameter. If an inappropriate disturbance parameter was employed, the

performance drops dramatically and even fails to derive the results (e.g., Exp3 in Table 8; Exp4 and Exp8

in Table 9). In addition, although the standard FS can produce good prediction results, the flexibility of

dividing the input space is quite limited due to its high computational complexity. As shown in Table 8,

when 384 fuzzy rules are involved, it takes over 45 minutes to derive the results. It is time consuming and

even impractical to employ the standard FS when some attributes are required to be finely divided. The

HFS produces slightly better prediction performance than the SFS-SISOM, but with far more fuzzy rules.

Although the number of required fuzzy rules is large, the running time to derive the result is short because

the HFS requires much less space computational cost. Moreover, the HFS is less sensitive to the learning

parameters, it produces more stable prediction performances in this experiment. This dataset involves

relatively high dimensions, and the HFS outperforms the other two FSs with respect to the interpretability

for the following reasons: 1) the standard FS jointly considers eight attributes in a fuzzy rule, and the

derived fuzzy rule might be too complicated for end users to understand. Also, only a small number of fuzzy

sets (i.e., 1 or 2) is employed to describe an attribute due to the curse of dimensionality; 2) the SFS-SISOM

only considers one attribute in a fuzzy rule. Instead, the HFS decomposes the high-dimensional problem into

three sub-SFSs, therefore, the negotiation behaviors can be better explained and understood by considering

diverse modeling granularities. Further from Exp5 in Table 10, it shows that by uneven partitions for

different attributes, the number of rules in the HFS can be reduced significantly. The distinguishing merit of

the SFS-SISOM is the modeling efficiency, as it can produce good prediction accuracy by using fewer fuzzy
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rules and iterations as long as the right learning parameters are identified.

In summary, this experiment shows that both the SFS-SISOM and the HFS can handle high dimensional

and large data effectively. The dataset is based on the block group rather than individual house, as it is less

complicated and less non-linear, therefore the linear model (i.e., the SFS-SISOM) performs well. However,

it is expected that, if the dataset with the individual houses is available, the HFS can be more useful and

effective. Therefore, the proposed three FSs provide a comprehensive set of model choices and are able to

handle various needs to accurately model the negotiation pricing behavior.

Table 9: Results of using the SFS-SISOM in the California dataset

Experiment # of sub-spaces in Attributes # of
rules

Disturbance
parameter

Iterations Training
APE(%)

Training
RMSE

Testing
APE(%)

Testing
RMSE

Running
time
(sec-
ond)

1 2 3 4 5 6 7 8

Exp1 1 1 1 1 1 1 1 1 16 999 10 2.2763 0.3913 2.2711 0.3653 9.13
Exp2 1 1 1 1 1 1 1 1 16 999 1000 2.2699 0.3574 2.2657 0.3591 519.16
Exp3 1 1 1 1 1 1 1 1 16 9999 10 2.4640 0.3837 2.4566 0.3848 9.01
Exp4 1 1 1 1 1 1 1 1 16 99999 10 N/A N/A N/A N/A 8.89
Exp5 2 2 2 2 2 2 2 2 24 999 10 2.1638 0.3446 2.1531 0.3419 13.04
Exp6 2 2 2 2 2 2 2 2 24 999 1000 2.1590 0.3436 2.1498 0.3413 1,409.67
Exp7 2 2 2 2 2 2 2 2 24 9999 10 2.2233 0.3508 2.2170 0.3487 13.23
Exp8 2 2 2 2 2 2 2 2 24 99999 10 18050.908 2838.5105 18183.354 2866.5483 13.05
Exp9 3 3 3 3 3 3 3 3 32 999 10 2.0386 0.3263 2.0354 0.3247 21.06
Exp10 3 3 3 3 3 3 3 3 32 9999 10 2.1547 0.3414 2.1586 0.3413 20.62
Exp11 3 3 3 3 3 3 3 3 32 99999 10 N/A N/A N/A N/A 20.39
Exp12 4 4 4 4 4 4 4 4 40 999 10 2.0918 0.3340 2.0752 0.3296 30.35
Exp13 4 4 4 4 4 4 4 4 40 9999 10 2.2093 0.3486 2.1936 0.3448 30.68
Exp14 4 4 4 4 4 4 4 4 40 99999 10 8.9838 1.6173 9.1614 1.6408 30.74

Table 10: Results of using the HFS in the California dataset

Experiment # of
rules

Partitions Iterations Training
APE(%)

Training
RMSE

Testing
APE(%)

Testing
RMSE

Running
time
(second)

Exp1 76 1 1 1;1 1 1 1 1;5 5 1000 2.5533 0.3977 2.6233 0.4107 226.16
Exp2 306 2 2 2;2 2 2 2 2;5 5 1000 2.1122 0.3413 2.1939 0.3581 328.81
Exp3 1,124 3 3 3;3 3 3 3 3;5 5 1000 1.9511 0.3160 2.039 0.3320 395.49
Exp4 3,286 4 4 4;4 4 4 4 4;5 5 1000 1.866 0.3084 1.9342 0.3160 636.48
Exp5 780 5 1 1;1 4 1 5 5;5 5 1000 1.9082 0.3111 1.9908 0.3257 355.71

5. Discussion

5.1. Interpretability and transparency

In regard to the development of DSSs, interpretability/transparency is one of the most crucially desirable

features. It is of paramount importance for researchers to further apply this insight to the predicament of

negotiation pricing. The proposed FS approach not only enables effective knowledge discovery, but also
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efficient knowledge representation in the form of linguistic IF-THEN fuzzy rules, which are understandable

and interpretable. When the dimension is low, the standard FS has the best interpretability, because it

can explain the complete conditions of input attributes within one fuzzy rule. On the contrary, the SFS-

SISOM can merely represent one influential aspect and the outcome in the derived fuzzy rules. However,

the standard FS and the SFS-SISOM offer a flat view in the sense that all attributes are listed at the same

level, and the impacts of different attributes become less apparent when a large number of attributes and

rules are involved. In the HFS, individual and less important attributes are aggregated (by the lower level

sub-FS) into the higher-level indexes, which are combined with important attributes to form a top-level

sub-FS to derive the system output (i.e., the negotiation price). For example, in DS2, the higher-level

sub-FS shows the aggregated impacts (in terms of intermediate variables) of living environments, house

property, and convenience on the house price. In this manner, the top-level sub-FS provides a high-level

overview and interpretation (i.e., from a forest point of view), while the lower-level sub-FS represents a more

detailed view of how each index is formed or formulated (i.e., how the forest is formed from trees). In other

words, the fuzzy rules derived from the HFS present comprehensive multi-views to understand negotiation

pricing behaviors. Such a feature of HFSs, which can provide both tree and forest views, is very useful for

complicated negotiation pricing problems to ensure and enable the interpretability and transparency.

5.2. Accuracy

The APE (%) and the RMSE were employed in this study to measure performance accuracy. Such

performance is dependent on how well the partitioned sub-spaces are covered by the training data. In order

to analyse this point, consider the case where n input attributes exist and the input space of each attribute

is partitioned by m sub-spaces (i.e., m+1 fuzzy sets). As such, there are mn and m×n divided sub-spaces in

the standard FS and the SFS-SISOM, respectively. In the HFS, the total number of the divided sub-spaces

is the same as the number of the divided sub-spaces in the hierarchical level that contains the maximum

number of attributes. Suppose there are L levels in the structure and ni attributes in the ith level; then

the total number of divided sub-spaces can be represented as:
∑L

i=1 m
ni . Since n =

∑L
i=1 ni, in most

cases, the number of the divided sub-spaces in the SFS-SISOM (i.e., m × n) and the number in the HFS

(i.e.,
∑L

i=1 m
ni) is smaller than that of the standard FS (i.e., mn). Thus, the divided sub-spaces in the

SFS-SISOM and the HFS stands a better chance of being covered when given the same training dataset and

partitions. This explains why the testing accuracy of the standard FS is lower than the other two FSs in

some cases. Besides the number of required data samples, the selected learning algorithms also contribute to

the model’s performance. The RLS learning algorithms for standard FSs and SFS-SISOMs ensure that the

global optima are found. However, the gradient decent algorithm used in HFSs may lead to a local optima.

If the selected initial parameters diverge to the global optima, the performance of the HFS can be affected.
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5.3. Generality

Generality relates not only to the capability of handling wide problem domains, but also the capability

of satisfying various modeling requirements. In general, compared to the SFS-SISOM and the HFS, the

standard FS is less generic in handling high-dimensional problems due to the large number of learning

parameters and fuzzy rules it requires. In order to cover the divided input space, the number of required

training samples should be at least as many as the number of required fuzzy rules; otherwise, the standard

FS may suffer from the high-dimensional problem. This drawback is clearly evident in some experiments

in DS1 (e.g., Exp12 in Table 3) and the inability to build usable models on DS2. In addition, from the

application point of view, in some cases the user would like to partition the input variable into a specified

number of sub-spaces, such that the negotiation behavior in a certain sub-space could be observed. The

capability of the standard FS to satisfy various modeling requirements is also bounded by the dimensionality

problem. For instance, in the DS1, the standard FS fails to produce acceptable predictive results when the

input attributes need to be partitioned into “2, 3, 2, 2” sub-spaces (i.e., Exp8, Exp10, and Exp12 in Table 3).

Under the same circumstance, SFS-SISOM and HFS are still capable of accomplishing such tasks. As such,

the SFS-SISOM and the HFS are superior to the standard FS in terms of model generality. Further, HFSs

are universal approximators and, therefore, can represent any nonlinear negotiation pricing models, whereas

SFS-SISOMs are not universal approximators and cannot accurately model some highly nonlinear scenarios.

5.4. Computational cost

The computational cost concerns both the space and time complexity in this study. For space complexity,

both standard FSs and SFS-SISOMs need to construct the input matrix. Hence, the required space for

standard FSs is O(MK), where M is the number of instances, K =
∏n

j=1 Nj is required number of fuzzy

rules, and Nj is the number of fuzzy sets of the jth attribute, while the required space for SFS-SISOMs is

O(MS), where S =
∑n

j=1 Nj is the required number of fuzzy rules for SFS-SISOMs. Since HFSs employ

the gradient decent algorithm for learning, the learning parameters are updated by instances. Therefore,

the required computational space of HFSs is much less than the other two FSs, and it is O(H), where H

(see Equation (7)) is the number of required fuzzy rule of HFSs.

In the proposed approach, triangular membership functions are selected in order to achieve the inter-

pretability and computing effectiveness. Triangular membership functions are basically piecewise linear

functions, and their derivatives are simple to calculate. Given T iterations, the time complexity of standard

FSs is either O(KMT ) or O(KMξ−2) (depends on which termination condition reaches first), where ξ

is the error threshold. The time complexity of SFS-SISOMs is either O(SMT ) or O(SMξ−2). In HFSs,

although there are multi-level sub-FSs, all computations only involve the derivatives of triangular member-

ship functions and some simple algebraic manipulations. The time complexity of HFS can be represented

as either O(HMT ) or O(HMξ−2) [3]. In this study, all the experiments were conducted on a laptop with
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Mac OS X 10.7.4, processor 1.7 GHz Intel Core i5, 4GB memory, and the running time of different FSs on

different datasets are summarized in Table 11. Table 11 shows that the proposed models can obtain the

results within a few seconds in most cases, and the standard FSs take the longest time to derive the result,

which is consistent with the above analyses. In DS3, the standard FS takes over 45 minutes when 384 rules

are involved. For SFS-SISOMs, if the number of iteration is small, it is quick to derive the result. For HFSs,

although they involve a large number of fuzzy rules in DS3, the space complexity is small, therefore, the

running time of each iteration of the HFSs is actually less than the standard FSs and SFS-SISOMs.

Table 11: Summary of running time

Standard FS SFS-SISOM HFS
No. of rules
(iterations)

running time
(second)

No. of rules
(iterations)

running time
(second)

No. of rules
(iterations)

running time
(second)

DS1
36 (100) 1.99 10 (100) 0.46 16-28 (6000) 2.56
114 (100) 109.93 14 (100) 0.86 16-28 (10000) 2.19

DS2 N/A 25-90 (10) 7.78 48-212 (6000) 62.43

DS3
256 (1) 689.43 16-48 (100) 23.59 76-1,124 (1000) 326.54
384 (1) 2,769.84 16-48 (1000) 964.42 3,286-8,028 (1000) 875.30

5.5. Applicability

One of the main contributions of this work is examining the applicability of three FSs in dealing with

negotiation pricing. In this study, no approach can always outperform the others. The above experimental

results reveal that the applicability of three FSs can differ, so understanding their applicabilities would be

beneficial to select the appropriate approach for the given problem. Generally speaking, the standard FS

is a better approach for low-dimensional problems with sufficient data samples (i.e., dense data coverage).

The main reason behind this is that the required number of partitioned sub-spaces in the input space

is relatively small when modeling low-dimensional problems, and such sub-spaces are more likely to be

well covered by training samples. This would help to improve prediction performance. Moreover, in the

standard FS, complete combinations of input conditions are linked through fuzzy intersection operators and

are represented in the form of fuzzy rules. As such, it is more suitable to select the standard FS when it

is required to emulate and observe different aspects of negotiation pricing behaviors. On the contrary, the

SFS-SISOM is a better approach for high-dimensional problems with insufficient data samples (i.e., sparse

data coverage). In the SFS-SISOM, the mathematical relationship between the input attributes and the

output attributes is individually emulated. This results in requiring far fewer fuzzy rules when modeling the

high-dimensional problems. The applicability of three FSs are depicted in Figure 5.

The performance of the HFS lies between the standard FS and the SFS-SISOM, as both the standard

and the SFS-SISOM FSs can be represented as special cases of HFS (as shown in Figure 6). When there

are no free parameters in the hierarchical structure and each original input attribute constructs a sub-FS
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Figure 5: Applicability of different FSs

(e.g., SFS1
1 , SFS1

2 , and SFS1
3 in Figure 6), the HFS becomes a SFS-SISOM. On the other hand, when only

one sub-FS exists (i.e., the top level sub-FS) in the hierarchical structure, and all original input attributes

contribute to the top level sub-FS, the HFS can be treated as a standard FS. Consequently, HFSs provide

more flexibility in building the predictive model, as the hierarchical structure can be modified according to

the features of the available datasets. Compared with the other two FSs, HFSs can be more easily adapted

to meet various modeling requirements. The discussions of the properties of three FSs are summarised in

Table 12 in which ‘A’ indicates the best performance and ‘C’ indicates the worst.
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Figure 6: Special cases of HFSs
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Table 12: Summary of the properties of three FS approaches

Approach Interpretablity Computational cost Generality Flexibility
Low-dimensional high-dimensional

Standard FS A C C C C
SFS-SISOM C B A B B
HFS B A B A A

The newly introduced HFS is important for the following reasons: First, compared to standard FSs,

which can represent any continuous function to any degree of accuracy (i.e., universal approximators) but

suffer from the problem of dimensionality, HFSs are universal approximators and are capable of overcoming

the problem of dimensionality. Second, from the learning mechanism point of view, although both SFS-

SISOMs and HFSs can handle the high-dimensional data, the mechanism behind is vastly different. The

SFS-SISOM is a simplified approach by omitting certain impacts of pricing attributes and more complicated

behaviors (in particular, the aggregated cross or 1 + 1 > 2 effect) , so that it can be learned from less

data. However, the SFS-SISOM is unable to represent some complicated systems or behaviors (i.e., not

universal approximators) due to their inherent structure. On the other hand, the HFS does not omit pricing

component, but employs the transfer learning mechanism to handle data coverage problem. Take the DS2

for an example, as long as there are sufficient data to learn the relationship between the three intermediate

variables and the house price, as well as how each of the above three intermediate variables are formed, the

knowledge from one data sample of good living environment, property, and convenience can be transferred to

represent other cases of good living environment, property, and convenience even if these other cases are good

due to different reasons (i.e., the values of the attributes in these cases are different from the available data

sample). In short, rather than using the simplification or omitting attributes as SFS-SISOMs, the transfer

mechanism enables HFSs to work effectively when training samples don’t densely cover the input space.

Thus, HFSs as universal approximators are capable of representing any complicated systems and providing

a flexible structure to represent any given negotiation pricing system with the right complexity and desired

accuracy if designed properly. Third, in the case of a large number of negotiation attributes, HFSs can be

designed to develop interpretable systems where the lower-level sub-systems represent the impact from the

raw attributes, and the higher-level sub-systems provide a small number of human-understandable indexes

which aggregate the impacts from a set of raw attributes.

6. Developing a Prototype System

In this section, a prototype system has been developed and presented. The system is a standalone

Java application that provides intelligent decision support for a series of negotiation pricing tasks. The

system allows pricing managers to load dataset, design, train, and test the fuzzy model, and then predict
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the negotiation price/discount for a new transaction. The graphic user interface (GUI) consists of five

components: menu, toolbar panel, display panel, tab control panel, and status display panel (see Figure 7).

The menu groups the basic functions of the system, and the toolbar panel provides a more convenient way

to access these functions. Once a user clicks the functional buttons on the toolbar panel, the tab control

panel will automatically switch to the corresponding tab. When the system is in use, the current status and

instructions are displayed on the status display panel. The basic functions are presented below:

• Open and view dataset: At the beginning, a pricing manager can select the dataset which will

be modeled from the Open button. Before the system is in use, the user should ensure the training

dataset and the corresponding testing dataset will be readily available and are named correctly in the

predefined way (i.e., filename + “-Test” indicates the testing dataset). The loaded dataset, including

the training dataset and testing dataset, can then be displayed in the display panel.

Figure 7: Prototype system - model design

• Design the model: When the user clicks the Design button on the toolbar panel, a design panel,

as shown in Figure 7, is provided and allows the user to identify the model type and specify different

learning parameters. The design panel contains two parts: the SFS panel for the design of standard

and SFS-SISOM FSs, and the HFS panel for the design of HFSs. Once the model type is selected, only

the corresponding design panel is enabled. The learning parameters and the hierarchical structure of
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HFSs must be entered in a predefined format. A tooltip with the format instructions is also provided

for each parameter. The raw dataset will be reconstructed according to the defined structure (e.g.,

attributes that in the same sub-FS will be grouped together). The reconstructed dataset can be

checked via the “Processed Data” option in the “View” menu.

Figure 8: Prototype system - generated fuzzy rules

• Train and test the model: Once the design of the predictive model is accomplished, the user can

click the Train button to train the designed model. The learning algorithm and defined parameters are

employed to learn the fuzzy rules from the training dataset. The training results and generated rules

will then be displayed. Consequently, the generated fuzzy rules (see Figure 8) are used in conjunction

with the testing dataset to further validate the built model. The testing results, including target

values, predicted value, error, APE, and RMSE, are shown in Figure 9. The plot of the target value

and the predicted value provides the user with a clear and intuitive view of model performance.

• Prediction: A suggested negotiation price/discount can be provided by the system to assist the

pricing manager when given a new transaction. In the prediction panel, the user can manually enter

the information of a new transaction, and then click the Predict button. The predicted price will

be displayed (an example is shown in Figure 10). This proposed price can be used as a baseline or

resistance point in the price negotiation.
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Figure 9: Prototype system - model testing

Figure 10: Prototype system - model prediction
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7. Conclusions

This study proposes a systematic and learning approach consisting of three different FSs (i.e., standard

FS, SFS-SISOM, and HFS) to provide intelligent decision support for negotiation pricing, in particular under

the high-dimensional and uncertain scenarios. The effectiveness and applicability of the proposed approaches

are demonstrated by three experimental datasets, varying from dimensionality to data coverage. The main

contributions of this work include: 1) Instead of tackling the difficult and unrealistic tasks to identify and

maximize the utility functions in negotiation pricing, this work proposes a new learning approach that

concentrates on identifying the right negotiation pricing by learning from historical data. The proposed

approach also is capable of learning the different influential factors for different customers, gaining a good

customer relationship by offering the right price to the right customer; 2) To handle the uncertain information

in negotiation pricing, a systematic and comprehensive set of fuzzy models is proposed, developed, and

compared. Their advantages and capabilities under different application scenarios are analyzed and discussed

with respect to the crucial properties of DSSs: interpretability and transparency, accuracy, generality,

computational cost, and applicability; and 3) A DSS prototype integrating the three FSs is developed and

validated. The system illustrates how the negotiation pricing DSS based on the proposed approach can be

designed and implemented for practical uses.

This research has several significant implications for research and practice. First, interpretability and

transparency is one of the most desirable features for DSSs. Compared with other data mining techniques

(e.g., neural networks), the FS-based approach is capable of transforming the acquired negotiation pricing

knowledge into human understandable IF-THEN fuzzy rules. The derived fuzzy rules can serve as unified

guidance in negotiation pricing and also be employed to train new sales representatives. Second, this study

endeavors to draw more attention to the dimensionality problem in negotiation pricing, which has yet to

be thoroughly investigated in the literature. It has been proven both theoretically and practically that the

standard FS is more susceptible to the problem of dimensionality. This study has shown that the other

two types of FSs can be used as a means to complement the standard FS in handling high-dimensional

problems. Third, this study reveals the properties and features of the three FSs. The proposed approach

and the integrated platform can provide immense potential and flexibility for end users to choose the most

suitable model for any particular problem.

Like many prior empirical studies, this research inevitably has several limitations that may trigger further

research. With the rapid development and promising results of e-negotiations, the proposed approach can

be integrated into e-negotiation platforms. In addition, the current prototype is not role-based and it does

not distinguish different groups of targeted users (e.g., data operators, model trainers, salespeople, and

managers). It is an important direction to improve the prototype by separating different tasks for different

groups of users, and providing clear visuals that guide users to the appropriate and applicable parts of the
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system. Moreover, since different users may have different preferences on the model properties, it is difficult

for the intelligent DSS to determine the most appropriate FS model on behalf of the decision maker. One

plausible way to automate the model selection is to allow the user to specify his/her model preferences in

the prototype system, then an overall performance score can be derived. Finally, it will be interesting to

extend the current model to support multi-issue and bilateral negotiation decision support for future studies.

If the historical data of bidding and offering during the price negotiation process were available, it will be

possible to build two additional models to learn the bidding behavior and successful offering strategy. Then

the system will be not only able to predict the final agreement prices proposed in this study, but also guide

the offering strategy based on the bidding behavior.
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