69 research outputs found

    HI scaling relations of galaxies in the environment of HI-rich and control galaxies observed by the Bluedisk project

    Full text link
    Our work is based on the "Bluedisk" project, a program to map the neutral gas in a sample of 25 HI-rich spirals and a similar number of control galaxies with the Westerbork Synthesis Radio Telescope (WSRT). In this paper we focus on the HI properties of the galaxies in the environment of our targeted galaxies. In total, we extract 65 galaxies from the WSRT cubes with stellar masses between 108M⊙10^8M_{\odot} and 1011M⊙10^{11}M_{\odot}. Most of these galaxies are located on the same HI mass-size relation and "HI-plane" as normal spiral galaxies. We find that companions around HI-rich galaxies tend to be HI-rich as well and to have larger R90,HI/R50,HI. This suggests a scenario of "HI conformity", similar to the colour conformity found by Weinmann et al. (2006): galaxies tend to adopt the HI properties of their neighbours. We visually inspect the outliers from the HI mass-size relation and galaxies which are offset from the HI plane and find that they show morphological and kinematical signatures of recent interactions with their environment. We speculate that these outliers have been disturbed by tidal or ram-pressure stripping processes, or in a few cases, by accretion events.Comment: 16 pages, 12 figures; accepted for publication in MNRA

    Bar-induced central star formation as revealed by integral field spectroscopy from CALIFA

    Full text link
    We investigate the recent star formation history (SFH) in the inner region of 57 nearly face-on spiral galaxies selected from the Calar Alto Legacy Integral Field Area (CALIFA) survey. For each galaxy we use the integral field spectroscopy from CALIFA to obtain two-dimensional maps and radial profiles of three parameters that are sensitive indicators of the recent SFH: the 4000\AA\ break (Dn_n(4000)), and the equivalent width of Hδ\delta absorption (EW(HδA\delta_A)) and Hα\alpha emission (EW(Hα\alpha)). We have also performed photometric decomposition of bulge/bar/disk components based on SDSS optical image. We identify a class of 17 "turnover" galaxies whose central region present significant drop in Dn_n(4000), and most of them correspondingly show a central upturn in EW(HδA\delta_A) and EW(Hα\alpha). This indicates that the central region of the turnover galaxies has experienced star formation in the past 1-2 Gyr, which makes the bulge younger and more star-forming than surrounding regions. We find almost all (15/17) the turnover galaxies are barred, while only half of the barred galaxies in our sample (15/32) are classified as a turnover galaxy. This finding provides strong evidence in support of the theoretical expectation that the bar may drive gas from the disc inward to trigger star formation in galaxy center, an important channel for the growth/rejuvenation of pseudobulges in disc galaxies.Comment: 19 pages, 10 figures, ApJ accepte

    The Formation of Star-forming Disks in the TNG50 Simulation

    Full text link
    We investigate the disk formation process in the TNG50 simulation, examining the profiles of SFR surface density (ΣSFR\Sigma_{\rm SFR}), gas inflow and outflow, and the evolution of the angular momentum of inflowing gas particles. The TNG50 galaxies tend to have larger star-forming disks, and also show larger deviations from exponential profiles in ΣSFR\Sigma_{\rm SFR} when compared to real galaxies in the MaNGA (Mapping Nearby Galaxies at APO) survey. The stellar surface density of TNG50 galaxies show good exponential profiles, which is found to be the result of strong radial migration of stars over time. However, this strong radial migration of stars in the simulation produces flatter age profiles in TNG50 disks compared to observed galaxies. The star formation in the simulated galaxies is sustained by a net gas inflow and this gas inflow is the primary driver for the cosmic evolution of star formation, as expected from simple gas-regulator models of galaxies. There is no evidence for any significant loss of angular momentum for the gas particles after they are accreted on to the galaxy, which may account for the large disk sizes in the TNG50 simulation. Adding viscous processes to the disks, such as the magnetic stresses from magneto-rotational instability proposed by Wang & Lilly 2022, will likely reduce the sizes of the simulated disks and the tension with the sizes of real galaxies, and may produce more realistic exponential profiles.Comment: 24 pages, 14 figures, accepted in Ap

    The peculiar filamentary HI structure of NGC 6145

    Full text link
    In this paper, we report the peculiar HI morphology of the cluster spiral galaxy NGC 6145, which has a 150 kpc HI filament on one side that is nearly parallel to its major axis. This filament is made up of several HI clouds and the diffuse HI gas between them, with no optical counterparts. We compare its HI distribution with other one-sided HI distributions in the literature, and find that the overall HI distribution is very different from the typical tidal and ram-pressure stripped HI shape, and its morphology is inconsistent with being a pure accretion event. Only about 30% of the total HI gas is anchored on the stellar disk, while most of HI gas forms the filament in the west. At a projected distance of 122 kpc, we find a massive elliptical companion (NGC 6146) with extended radio emission, whose axis points to an HI gap in NGC 6145. The velocity of the HI filament shows an overall light-of- sight motion of 80 to 180 km/s with respect to NGC 6145. Using the long-slit spectra of NGC 6145 along its major stellar axis, we find that some outer regions show enhanced star formation, while in contrast, almost no star formation activities are found in its center (less than 2 kpc). Pure accretion, tidal or ram-pressure stripping is not likely to produce the observed HI filament. An alternative explanation is the jet-stripping from NGC 6146, although direct evidence for a jet-cold gas interaction has not been found.Comment: 12 pages, 6 figures; Accepted for publication in A

    Spectroscopic Observation and Analysis of HII regions in M33 with MMT: Temperatures and Oxygen Abundances

    Full text link
    The spectra of 413 star-forming (or HII) regions in M33 (NGC 598) were observed by using the multifiber spectrograph of Hectospec at the 6.5-m Multiple Mirror Telescope (MMT). By using this homogeneous spectra sample, we measured the intensities of emission lines and some physical parameters, such as electron temperatures, electron densities, and metallicities. Oxygen abundances were derived via the direct method (when available) and two empirical strong-line methods, namely, O3N2 and N2. In the high-metallicity end, oxygen abundances derived from O3N2 calibration were higher than those derived from N2 index, indicating an inconsistency between O3N2 and N2 calibrations. We presented a detailed analysis of the spatial distribution of gas-phase oxygen abundances in M33 and confirmed the existence of the axisymmetric global metallicity distribution widely assumed in literature. Local variations were also observed and subsequently associated with spiral structures to provide evidence of radial migration driven by arms. Our O/H gradient fitted out to 1.1 R25R_{25} resulted in slopes of −0.17±0.03-0.17\pm0.03, −0.19±0.01-0.19\pm0.01, and −0.16±0.17-0.16\pm0.17 dex R25−1R_{25}^{-1} utilizing abundances from O3N2, N2 diagnostics, and direct method, respectively.Comment: Accepted for publication in Ap
    • …
    corecore