2,051 research outputs found

    The General Characteristics of Electromagnetic Radiation During Coal Fracture and Its Application in Outburst Prediction

    Get PDF
    Coal and methane outburst are catastrophic in coal mining, their prediction is difficult. In this paper, the electromagnetic radiation (EMR) generated during coal or rock deformation and fracturing is measured and analyzed. The results show that EMR truly exists during the fracture of coal or rock (with or without the presence of gas). It follows the Hurst statistical rule, and it basically exhibits gradually enhancing tendency during the process. The EMR strength and frequency are correlated to the coal or rock fracture process. Based on the experimental and theoretical studies, a new method for coal and methane outburst prediction is proposed -the EMR method. This new method significantly facilitates methane outburst prediction

    Ejecta-circumstellar medium interaction in high-density environment contribution to kilonova emission: Application to GRB 191019A

    Full text link
    The nearby long-duration GRB 191019A recently detected by Swift lacks an associated supernova and belongs to a host galaxy with little star formation activity, suggesting that the origin of this burst is the result of a merger of two compact objects with dynamical interactions in a high-density medium of an active galactic nucleus. Given the potential motivation of this event, and given that it occurs in such a high-density environment, the ejecta-circumstellar medium (CSM) interaction cannot be ignored as possibly contributing to the kilonova emission. Here, we theoretically calculate the kilonova emission by considering the contribution of the ejecta-CSM interaction in a high-density environment. We find that the contribution to the kilonova emission from the ejecta-CSM interaction will dominate at a later time, and a smaller ejecta mass will have a stronger kilonova emission from the ejecta-CSM interaction. Moreover, we try to apply it to GRB 191019A, but we find that it is difficult to identify the possible kilonova emission from the observations, due to the contribution of the bright host galaxy. On the other hand, less injected mass (less than Mej=2×10−5M⊙M_{\rm ej}=2\times10^{-5}M_{\odot}) will be required if one can detect the kilonova emission associated with a GRB 191019A-like event in the future. The {\em r}-process-powered and spin energy contributions from the magnetar are also discussed.Comment: 10 pages, 6 figures, updated the rederence list. ApJ in press, and matched with the published veriso

    Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media.

    Get PDF
    Hydrogen evolution reaction is an important process in electrochemical energy technologies. Herein, ruthenium and nitrogen codoped carbon nanowires are prepared as effective hydrogen evolution catalysts. The catalytic performance is markedly better than that of commercial platinum catalyst, with an overpotential of only -12 mV to reach the current density of 10 mV cm-2 in 1 M KOH and -47 mV in 0.1 M KOH. Comparisons with control experiments suggest that the remarkable activity is mainly ascribed to individual ruthenium atoms embedded within the carbon matrix, with minimal contributions from ruthenium nanoparticles. Consistent results are obtained in first-principles calculations, where RuCxNy moieties are found to show a much lower hydrogen binding energy than ruthenium nanoparticles, and a lower kinetic barrier for water dissociation than platinum. Among these, RuC2N2 stands out as the most active catalytic center, where both ruthenium and adjacent carbon atoms are the possible active sites
    • …
    corecore