2 research outputs found

    Land-use change interacts with island biogeography to alter bird community assembly

    Get PDF
    Anthropogenic activities have reshaped biodiversity on islands worldwide. However, it remains unclear how island attributes and land-use change interactively shape multiple facets of island biodiversity through community assembly processes. To answer this, we conducted bird surveys in various land-use types (mainly forest and farmland) using transects on 34 oceanic land-bridge islands in the largest archipelago of China. We found that bird species richness increases with island area and decreases with isolation, regardless of the intensity of land-use change. However, forest-dominated habitats exhibited lower richness than farmland-dominated habitats. Island bird assemblages generally comprised species that share more similar traits or evolutionary histories (i.e., functional and/or phylogenetic clustering) than expected if assemblages were randomly assembled. Contrary to our expectations, we observed that bird assemblages in forest-dominated habitats were more clustered on large and close islands, whereas assemblages in farmland-dominated habitats were more clustered on small islands. These contrasting results indicate that land-use change interacts with island biogeography to alter the community assembly of birds on inhabited islands. Our findings emphasize the importance of incorporating human-modified habitats when examining the community assembly of island biota, and further suggest that agricultural landscapes on large islands may play essential roles in protecting countryside island biodiversity

    Land-use change interacts with island biogeography to alter bird community assembly

    Get PDF
    Anthropogenic activities have reshaped biodiversity on islands worldwide. However, it remains unclear how island attributes and land-use change interactively shape multiple facets of island biodiversity through community assembly processes. To answer this, we conducted bird surveys in various land-use types (mainly forest and farmland) using transects on 34 oceanic land-bridge islands in the largest archipelago of China. We found that bird species richness increases with island area and decreases with isolation, regardless of the intensity of land-use change. However, forest-dominated habitats exhibited lower richness than farmland-dominated habitats. Island bird assemblages generally comprised species that share more similar traits or evolutionary histories (i.e., functional and/or phylogenetic clustering) than expected if assemblages were randomly assembled. Contrary to our expectations, we observed that bird assemblages in forest-dominated habitats were more clustered on large and close islands, whereas assemblages in farmland-dominated habitats were more clustered on small islands. These contrasting results indicate that land-use change interacts with island biogeography to alter the community assembly of birds on inhabited islands. Our findings emphasize the importance of incorporating human-modified habitats when examining the community assembly of island biota, and further suggest that agricultural landscapes on large islands may play essential roles in protecting countryside island biodiversity
    corecore