UNIVERSITY^{OF} BIRMINGHAM University of Birmingham Research at Birmingham

Land-use change interacts with island biogeography to alter bird community assembly

Zhao, Yuhao; Mendenhall, Chase; Matthews, Tom; Wang, Duorum; Li, Wande; Liu, Xiangxu; Tang, Shupei; Han, Peng; Wei, Guangpeng; Kang, Yi; Wu, Chenxiao; Wang, Rui; Zeng, Di; Frishkoff, Luke O.; Si, Xingfeng

License: Creative Commons: Attribution (CC BY)

Document Version Peer reviewed version

Citation for published version (Harvard):

Zhao, Y, Mendenhall, C, Matthews, T, Wang, D, Li, W, Liu, X, Tang, S, Han, P, Wei, G, Kang, Y, Wu, C, Wang, R, Zeng, D, Frishkoff, LO & Si, X 2024, 'Land-use change interacts with island biogeography to alter bird community assembly', *Proceedings of the Royal Society B: Biological Sciences*.

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

1 Land-use change interacts with island biogeography to alter

2 bird community assembly

- 3 Yuhao Zhao¹, Chase D. Mendenhall², Thomas J. Matthews^{3,4}, Duorun Wang¹, Wande
- 4 Li¹, Xiangxu Liu¹, Shupei Tang¹, Peng Han¹, Guangpeng Wei¹, Yi Kang¹, Chenxiao
- 5 Wu¹, Rui Wang¹, Di Zeng¹, Luke O. Frishkoff⁵, Xingfeng Si^{1*}
- 6 ¹Zhejiang Zhoushan Archipelago Observation and Research Station, Institute of Eco-Chongming,
- 7 Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of
- 8 Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China;
- ⁹ ²Section of Birds, Carnegie Museum of Natural History, Pittsburgh, PA 15213, USA;
- 10 ³GEES (School of Geography, Earth and Environmental Sciences) and Birmingham Institute of
- 11 Forest Research, University of Birmingham, Birmingham, B15 2TT, UK;
- 12 ⁴CE3C Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group
- 13 / CHANGE Global Change and Sustainability Institute and Universidade dos Açores Faculty
- 14 of Agricultural Sciences and Environment, PT-9700-042, Angra do Heroísmo, Açores, Portugal;
- ⁵Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA.
- 16
- 17 ORICD: Yuhao Zhao (0000-0002-8985-9633), Chase D. Mendenhall (0000-0002-
- 18 4789-0587), Thomas J. Matthews (0000-0002-7624-244X), Wande Li (0000-0003-
- 19 2363-9563), Di Zeng (0000-0003-2780-3738), Luke Frishkoff (0000-0001-5738-
- 20 2140), Xingfeng Si (0000-0003-4465-2759)
- 21 *Corresponding author: Xingfeng Si
- 22 Email: sixf@des.ecnu.edu.cn

23	Abstract: Anthropogenic activities have reshaped biodiversity on islands worldwide.
24	However, it remains unclear how island attributes and land-use change interactively
25	shape multiple facets of island biodiversity through community assembly processes.
26	To answer this, we conducted bird surveys in various land-use types (mainly forest
27	and farmland) using transects on 34 oceanic land-bridge islands in the largest
28	archipelago of China. We found that bird species richness increases with island area
29	and decreases with isolation, regardless of the intensity of land-use change. However,
30	forest-dominated habitats exhibited lower richness than farmland-dominated habitats.
31	Island bird assemblages generally comprised species that share more similar traits or
32	evolutionary histories (i.e., functional and/or phylogenetic clustering) than expected if
33	assemblages were randomly assembled. Contrary to our expectations, we observed
34	that bird assemblages in forest-dominated habitats were more clustered on large and
35	close islands, whereas assemblages in farmland-dominated habitats were more
36	clustered on small islands. These contrasting results indicate that land-use change
37	interacts with island biogeography to alter the community assembly of birds on
38	inhabited islands. Our findings emphasize the importance of incorporating human-
39	modified habitats when examining the community assembly of island biota, and
40	further suggest that agricultural landscapes on large islands may play essential roles in
41	protecting countryside island biodiversity.
42	Keywords: Anthropocene, biodiversity conservation, countryside island

43 biogeography, farmland, functional trait, oceanic island

1. Introduction

45	Islands are hotspots of biodiversity that make up 5.3% of the global land area but
46	support around 20% of the world's species [1,2]. However, the decline and turnover
47	of biodiversity on islands due to anthropogenic activities are more rapid than
48	anywhere else [3]. A primary driver of island biodiversity decline is land-use change
49	[4,5], especially the conversion of natural forests into agricultural lands and
50	settlements [6-8]. Therefore, it is critical to disentangle the effects of human activities
51	on island biodiversity from those of natural biophysical island characteristics [9] to
52	better understand the drivers of biodiversity loss and to inform conservation strategies
53	aimed at mitigating further biodiversity declines.
54	The Equilibrium Theory of Island Biogeography (hereafter ETIB) postulates that
55	larger islands have lower extinction rates (<i>i.e.</i> , area effect) and more remote islands
56	have lower colonization rates (<i>i.e.</i> , distance effect) [10], resulting in the positive
57	species-area and negative species-isolation relationships. In contrast to ETIB, which
58	is generally discussed in the context of biodiversity in natural habitats, countryside
59	biogeography highlights the importance of human-dominated landscapes (e.g.,
60	farmland habitats) in supporting biodiversity [11,12]. Linking countryside
61	biogeography and island biogeography thus provides an alternative framework,
62	namely countryside island biogeography, which can be used to frame conservation
63	science in human-dominated landscapes on inhabited islands [13,14]. To date, few
64	studies have explored how human-modified habitats affect species diversity patterns

65	in true island systems (i.e., islands surrounded by water). Moreover, these studies
66	often do so by surveying only one or a small number of island(s) [15-17], probably
67	due to the efforts required to sample multiple habitats across different islands. To the
68	best of our knowledge, no study has explored the <i>interactive</i> effect of island
69	biogeography (e.g., island area and isolation) and land-use change on biodiversity
70	across multiple inhabited true islands — a key component of countryside island
71	biogeography.
72	In naturally forested regions, ecological theory predicts that all else being equal
73	farmland habitats harbour lower richness than forest habitats because they provide
74	fewer complex niches and resources, and have generally been present for a much
75	shorter period of time than adjacent forests (<i>i.e.</i> , there has been little time for new taxa
76	to originate via speciation), especially on small and remote islands (figure 1a) [18-
77	21]. In other words, species richness on small and remote islands should be more
78	affected by land-use change than on large and close islands (<i>i.e.</i> , there is expected to
79	be an interactive effect between island characteristics and land-use change) (figure
80	1b).
81	Clarifying the processes and mechanisms underpinning community assembly is
82	key to understanding the maintenance of biodiversity [22]. Researchers have recently
83	incorporated species traits and evolutionary histories into ETIB to try to better
84	understand community assembly processes on islands [23,24]. Suppose species with
85	strong dispersal abilities are more likely to successfully colonise islands and/or that

86	the subsequent probability of survival is related to specific habitat availability on
87	different islands (e.g., the availability of mature trees on islands is essential for tree-
88	roosting species). Under these circumstances, relative to a larger species pool, insular
89	assemblages will comprise a subset of species that share similar functional traits (<i>i.e.</i> ,
90	functional clustering) [25,26] which confer a survival advantage in specific insular
91	environments [27]. If these traits are phylogenetically conserved, which is generally
92	common [28], insular assemblages will also comprise groups of species that are more
93	similar in terms of their evolutionary history than expected (<i>i.e.</i> , phylogenetic
94	clustering). A contrasting theoretical prediction is that closely related species that
95	share similar traits or resource requirements are more likely to compete due to the
96	limited resource on (particularly small) islands [29]. In this case, island biotas are
97	expected to comprise species with distinct traits and/or evolutionary histories (i.e.,
98	functional and/or phylogenetic overdispersion) [25,26] through competitive exclusion
99	of closely related species. However, empirical studies of various taxa have found the
100	structure of island assemblages is, in general, phylogenetically and functionally
101	clustered [26,30,31]. Given the presence of severe environmental filters and limited
102	habitat diversity, in addition to the increased role of dispersal filtering, on small and
103	remote islands, one may expect community structure on these types of islands to be
104	even more phylogenetically and functionally clustered [32] (figure 1c). As such, we
105	may expect that community structure patterns will change across island area and
106	isolation gradients (<i>i.e.</i> , structure-area and structure-isolation relationships).

107	The aforementioned expectations relate to assemblages on islands that still
108	maintain full forest cover [33]. However, land-use change, a feature of almost all
109	inhabited islands globally, may impact community assembly in insular biotas, leading
110	to altered community structure. The transformation of forests to farmland typically
111	reduces habitat diversity and complexity at certain scales (e.g., per transect), resulting
112	in more homogenised assemblages in farmland, especially on large and close islands
113	where human activities are more frequent [34,35]. Thus, we predict that community
114	structure in farmland-dominated habitats on islands will be even more clustered (<i>i.e.</i> ,
115	species are more closely related and functionally similar than expected) than in forest-
116	dominated habitats, as only a few insular species can likely tolerate significant human
117	disturbance (<i>i.e.</i> , the conversion of forest to farmland acts as a strong environmental
118	filter) [18,36].
119	In this study, we examined whether there are interactive effects of land-use type
120	and island attributes (area and isolation) on bird assemblages in the Zhoushan
121	Archipelago, the largest archipelago in China with > 1,000 continental (oceanic land-
122	bridge) islands. To address this question, we surveyed birds during the breeding
123	season along transects with varying proportions of land-use types (primarily forest
124	and farmland) on 34 islands that span a gradient of island area and isolation in the
125	archipelago. We used these data to test three predictions. 1) The species richness of
126	bird assemblages will increase with island area and decrease with isolation, in
127	accordance with the predictions of ETIB (figure 1b). 2) The phylogenetic and

128	functional community structure of bird assemblages will be clustered on the study
129	islands, and the degree of clustering will decrease with island area and increase with
130	isolation (figure 1c). 3) There will be an interactive effect of land-use change (<i>i.e.</i> , the
131	presence of human-modified habitats) and island biogeographic variables on insular
132	bird richness and community assembly. Specifically, the species-area relationship and
133	species-isolation relationship are expected to be steeper along transects with an
134	increasing proportion of farmland and a decreasing proportion of forest (figure 1b). In
135	addition, birds inhabiting farmland-dominated transects are predicted to be more
136	compositionally similar across islands (<i>i.e.</i> , phylogenetic and functional redundancy)
137	compared to those in forest-dominated transects, resulting in flatter structure-area and
138	structure-isolation relationships with increasing farmland cover along a transect
139	(figure 1c).
140	
141	2. Methods
142	2.1 Study site
143	Our study is situated in the Zhoushan Archipelago (29°31'-31°04'N, 121°30'-
144	123°25'E), in eastern China (figure 2). The region belongs to the subtropical oceanic
145	monsoon zone, with a strong seasonal climate (<i>i.e.</i> , hot summers and cold winters).
146	The average temperature between April to June in 2020 and 2021 (i.e., surveying

- 147 period) was 20.73°C (data from China Meteorological Administration;
- 148 http://lishi.tianqi.com). The subtropical evergreen broadleaf forest is the dominant

149	vegetation on the islands of the Zhoushan Archipelago, along with coniferous forests,
150	grasslands, and shrubs [37,38]. The Zhoushan Archipelago provides an excellent
151	opportunity to test the interactive effects of human land use and island biophysical
152	characteristics on island community diversity and assembly for a number of reasons.
153	First, archaeological evidence indicates that humans have continuously occupied the
154	archipelago since at least the Neolithic (i.e., 5,000 years ago) [39], resulting in
155	complex landscapes (including some agricultural lands) on most islands. The primary
156	agricultural crops cultivated on the islands include rice, maize, sweet potato, oilseed
157	rape, as well as various vegetables and fruits, all of which are patchily distributed
158	within and across islands (http://zstj.zhoushan.gov.cn/col/col1229615782/index.html).
159	Second, background information on the region's biota is well-known, given that
160	research on the archipelago has been undertaken since the 1850s [40,41]. Lastly, as
161	the focus is on birds, the effect of evolutionary processes (e.g., in situ speciation) can
162	be largely ignored, given the relatively short geological history of the islands being
163	separated from the mainland (about 7,000–9,000 years).

using ArcGIS based on a meter-resolution dataset of global coastlines [42] (electronicsupplementary material, table S1).

171

172	2.2 Field survey and bird data
173	We located transects for bird surveys on each island based on the available forest (<i>i.e.</i> ,
174	the dominant vegetation along the transect is evergreen broadleaf forest) and farmland
175	(<i>i.e.</i> , the transect runs through multiple crops in farmers' fields). The number of
176	transects on each island was roughly proportional to island area [43]. The length of
177	most transects was around 2 km, with a few being 1 km because of logistical
178	restrictions (i.e., cliffs or inaccessible terrain on, the mostly smaller, islands) (see
179	more details in electronic supplementary material, table S1). As a result, we set a total
180	of 70 transects on 34 study islands.
181	We conducted breeding bird surveys along each transect from April to June in
182	2020 and 2021, respectively. During each breeding season, the survey was conducted
183	twice within a one-month interval, which is the maximum effort we could afford in
184	the field [44], so we undertook four replicated surveys for each transect during two
185	sampling years. In each survey, at least two trained observers walked the transect at a
186	constant speed (1-2 km/h depending on the terrain) while maintaining the overall
187	surveying time of around 1.5 hours to make the sampling efforts comparable. The
188	observers recorded the number of individuals of all bird species seen or heard within a
189	50 m distance on both sides of the transect. Surveys ran from half an hour after dawn

to 11:00 h, and from 15:00 h to half an hour before sunset. We did not conductsurveys when it was rainy or windy.

197

198 **2.3 Land-use types along each transect**

199 To assess the land-use types along each transect, we utilized the WorldCover 2021

200 v200 product (<u>https://esa-worldcover.org/en</u>), which provides land-use information at

201 a resolution of 10 m worldwide. The product includes 11 primary land-use classes and

202 has an overall accuracy of 76.7% based on the validation report [45]. While our

203 primary focus was on forest and farmland habitats, we also recognized the

204 significance of human settlements as habitats for certain species, such as the barn

205 swallow (Hirundo rustica) and red-rumped swallow (Hirundo daurica) on the study

206 islands. Therefore, we selected three land-use types to represent the transect habitat

207 composition: farmland, forest, and settlements. These three land-use types accounted

- for nearly 87% of the total land-use cover across the 70 transects. We manually
- 209 checked and corrected the land-use type along each transect based on Google Earth

and field observations, where necessary (electronic supplementary material, figureS1).

212	To calculate the percentage cover of the three land-use types, we chose a 50-m
213	buffer area. This buffer area was selected because we recorded bird observations
214	within a 50 m distance on both sides of the transect. Note that we have also calculated
215	the land-use cover using 100-m and 200-m buffer areas, and the results were
216	qualitatively similar (electronic supplementary material, tables S3-S5). Therefore, for
217	the subsequent analyses, we used the results obtained from 50-m buffer areas. We did
218	not consider larger buffer areas as the study was conducted on islands – including
219	many small islands – and using larger buffers would often result in the inclusion of
220	large areas of water.

221

222 **2.4 Species traits and phylogeny**

223 For each species, we sourced data on body length, body mass, bill length, wing

length, tail length, and tarsus length from a bird trait dataset specific to China [46].

225 The traits we chose are highly associated with birds' ecological niches (*i.e.*, diets and

behaviours) [47] (See electronic supplementary material, text S1 for more details on

227 the choice of traits and sources). Before conducting the analyses, we log_{10} -

transformed body mass to stabilize the variance and to normalize the distribution [48].

- Bill length, wing length, tail length, and tarsus length were divided by body length to
- ensure these trait values are independent of body size [49] (electronic supplementary

231	material, table S6). Because body mass and body length were highly correlated
232	(Pearson's $r = 0.92$, $p < 0.001$), we excluded body length from the analyses.
233	We then built a functional dendrogram using a modified version of neighbor-
234	joining clustering [50] based on a Gower dissimilarity distance matrix of the five
235	morphological traits (scaled and centered). This clustering method minimizes
236	functional space distortion [51], and we observed that the functional dendrogram
237	provided a high quality representation of the distances between species in the Gower
238	dissimilarity distance matrix (0.98, measured by the standardised inverse of mean
239	squared deviation [52], with 1 representing the maximum quality). The functional
240	dendrogram was built using the <i>tree.build</i> function in the 'BAT' package [53].
241	To obtain an avian phylogeny, we downloaded 5,000 posterior phylogenetic
242	trees under the option of 'Hackett All Species: a set of 10,000 trees with 9,993 OTUs
243	each' from BirdTree (http://birdtree.org) [54], including only the species recorded in
244	our study. We then constructed a maximum clade credibility tree across 5,000
245	pseudo-posterior samples using the software TreeAnnonator v1.8.2 [55]. The
246	resulting consensus tree was used for subsequent phylogenetic analyses.
247	
248	2.5 Sampling completeness and phylogenetic signal
249	Before undertaking statistical analyses, we tested the sampling completeness of each
250	transect based on the species presence/absence matrix derived from four replicated

surveys. The sampling completeness was calculated using the *iNEXT* function in the

252	'iNEXT' package [56]. Most transects had relatively high sampling completeness,
253	with the exception of a single small island (S33, 64%; electronic supplementary
254	material, table S1).
255	We estimated the phylogenetic signal of species traits (<i>i.e.</i> , body mass, relative
256	bill length, relative wing length, relative tail length, and relative tarsus length) with
257	Blomberg's K [57] and Pagel's λ [58] using the <i>phylosig</i> function in the 'phytools'
258	package [59]. All morphological traits had significant phylogenetic signals ($p <$
259	0.001; electronic supplementary material, table S7), indicating that the selected traits
260	are phylogenetically conserved.
261	
262	2.6 Metrics of bird richness and community structure
262 263	2.6 Metrics of bird richness and community structure We first calculated the number of species (species richness, SR) along each transect.
262 263 264	2.6 Metrics of bird richness and community structureWe first calculated the number of species (species richness, SR) along each transect.To estimate phylogenetic community structure, we used the standardized effect size
262 263 264 265	 2.6 Metrics of bird richness and community structure We first calculated the number of species (species richness, SR) along each transect. To estimate phylogenetic community structure, we used the standardized effect size (SES) of mean pairwise phylogenetic distance (MPD), denoted as SES.MPD, which
262 263 264 265 266	 2.6 Metrics of bird richness and community structure We first calculated the number of species (species richness, SR) along each transect. To estimate phylogenetic community structure, we used the standardized effect size (SES) of mean pairwise phylogenetic distance (MPD), denoted as SES.MPD, which represents the phylogenetic relatedness of species within an assemblage [28].
262 263 264 265 266 267	 2.6 Metrics of bird richness and community structure We first calculated the number of species (species richness, SR) along each transect. To estimate phylogenetic community structure, we used the standardized effect size (SES) of mean pairwise phylogenetic distance (MPD), denoted as SES.MPD, which represents the phylogenetic relatedness of species within an assemblage [28]. Similarly, for functional community structure, we calculated the standardized effect
262 263 264 265 266 267 268	 2.6 Metrics of bird richness and community structure We first calculated the number of species (species richness, SR) along each transect. To estimate phylogenetic community structure, we used the standardized effect size (SES) of mean pairwise phylogenetic distance (MPD), denoted as SES.MPD, which represents the phylogenetic relatedness of species within an assemblage [28]. Similarly, for functional community structure, we calculated the standardized effect size (SES) of mean pairwise functional distance (MFD), denoted as SES.MFD [60].
 262 263 264 265 266 267 268 269 	2.6 Metrics of bird richness and community structure We first calculated the number of species (species richness, SR) along each transect. To estimate phylogenetic community structure, we used the standardized effect size (SES) of mean pairwise phylogenetic distance (MPD), denoted as SES.MPD, which represents the phylogenetic relatedness of species within an assemblage [28]. Similarly, for functional community structure, we calculated the standardized effect size (SES) of mean pairwise functional distance (MFD), denoted as SES.MFD [60]. MPD and MFD were calculated using our maximum clade credibility
 262 263 264 265 266 267 268 269 270 	2.6 Metrics of bird richness and community structure We first calculated the number of species (species richness, SR) along each transect. To estimate phylogenetic community structure, we used the standardized effect size (SES) of mean pairwise phylogenetic distance (MPD), denoted as SES.MPD, which represents the phylogenetic relatedness of species within an assemblage [28]. Similarly, for functional community structure, we calculated the standardized effect size (SES) of mean pairwise functional distance (MFD), denoted as SES.MFD [60]. MPD and MFD were calculated using our maximum clade credibility phylogenetic tree and functional dendrogram, respectively. The values of SES.MPD

- and SES.MFD were calculated using the 'shuffling tip' null model approach. This
- null model randomly shuffled the taxa labels of each phylogenetic tree or functional

273	dendrogram (i.e., the species pool of the null model was the archipelago species list,
274	see also below) while retaining the structure of the community data [61]. We ran the
275	null model 999 times and recalculated the MPD and MFD of each randomised
276	community. The equation of SES is:
277	$SES = (Obs - Mean_{null})/SD_{null},$
278	where Obs is the observed MPD or MFD on each transect, and $Mean_{null}$ and SD_{null} are
279	the mean and standard deviation values of 999 randomisations for the MPD and MFD
280	of each transect.
281	SES.MPD and SES.MFD measure species relatedness in the observed
282	community compared to species randomly sampled from the species pool.
283	Specifically, SES values of MPD and MFD < 0 suggest phylogenetic or functional
284	clustering (species share similar traits or evolutionary histories), SES values > 0
285	suggest phylogenetic or functional overdispersion (species share distinct traits or
286	evolutionary histories), and SES values ≈ 0 indicate a random phylogenetic or
287	functional community structure [28]. SES values less than -1.96 or greater than 1.96
288	indicate significant clustering or overdispersion, respectively ($\alpha = 0.05$). The
289	SES.MPD and SES.MFD metrics were calculated using the ses.mpd function in
290	'picante' package [62].
291	During our sampling, we found several species that occurred on all islands (e.g.,
292	light-vented bulbul [Pycnonotus sinensis]). Thus, based on the concept of dispersion-
293	field species pools [63], we considered the species pool to comprise all species that

294	were observed on the study islands. However, we recognise that the selection of a
295	specific species pool could potentially affect the community structure results [64]. To
296	confirm the robustness of our results, we ran additional analyses where we expanded
297	the species pool by incorporating bird species occurring on (i) the study islands but
298	that were not sampled by us, and (ii) the surrounding mainland, based on a citizen
299	bird surveying database (i.e., China Bird Report; http://www.birdreport.cn/), and in
300	both cases recalculated the community structure metrics. We found that the results
301	based on the different species pools are qualitatively the same. We thus only report in
302	the main manuscript the findings from the analyses including all observed species
303	from the study islands as the species pool. Please see electronic supplementary
304	material, text S2 for more information about the results from analyses of alternative
305	species pools.

306

307 2.7 Statistical analyses

Our study was conducted at the transect level (*i.e.*, the unit of analysis is a transect), so we applied linear mixed-effect regression models (LMM), with island identity as a random effect (*i.e.*, random intercept), to regress bird richness and community structure per transect against the fixed effects using the *lmer* function in the 'lme4' package [65]. To test if bird richness and community structure follow the predictions of the Equilibrium Theory of Island Biogeography, we used either island area or isolation as the fixed effect in the LMM. In a separate model, we used the percentage

315	cover of each land-use type (forest, farmland, and settlement) as a fixed effect to test
316	the bivariate relationships between bird richness and community structure and land-
317	use type. Finally, to test if there are any interactive effects of land-use change and
318	island attributes on bird richness and community structure, we fitted a model with
319	island area/isolation and the percentage cover of each land-use type, including an
320	interaction term between island area/isolation and each land-use type (e.g., island area
321	× farmland cover). Note we also conducted analyses using multivariate models (<i>i.e.</i> ,
322	models contain island area, isolation, the percentage cover of forest, farmland, and
323	settlement, as well as the interaction term between island area/isolation and each land-
324	use type as fixed effect) and the results are qualitatively the same as univariate models
325	described above (see electronic supplementary material, text 3 and tables S8–S11).
326	We thus put the results based on multivariate models into the supplementary material
327	and only reported the results based on univariate models in the main text. Island area
328	was log ₁₀ -transformed to normalize model residuals. There were only weak
329	correlations between the percentage cover of each land-use type and island area or
330	isolation (Pearson's r < 0.4; electronic supplementary material, table S12). Model
331	residual assumptions were visually checked, and the residuals met the assumptions of
332	linear models. All analyses were conducted in R version 4.1.2 [66].
333	
334	3. Results

3.1 Effect of island area, isolation, and land-use types on species richness

Consistent with the predictions of the Equilibrium Theory of Island Biogeography, 336

transect-level species richness (SR) significantly increased with island area (t = 3.22, 337

df = 24.6, p < 0.01; figure 3a) and decreased with isolation (t = -6.33, df = 68, p < 0.01) 338

- 339 0.001; figure 3b), according to our LMMs. We note, however, the effect of island area
- 340 on SR could be partially explained by the transect length (*i.e.*, sampling effect) as we

341 also found transect length had a positive effect on SR (please see electronic

342 supplementary material, text S3 for more details).

343 In addition, transect-level SR had significant relationships with the three land-

344 use types (electronic supplementary material, table S13). Specifically, SR increased

with increasing farmland cover (t = 4.4, df = 41.5, p < 0.001; figure 3c) and settlement 345

346 cover (t = 3.51, df = 46, p < 0.01; figure 3d), but decreased with increasing forest

347 cover (t = -4.63, df = 41.9, p < 0.001; figure 3e). However, the land-use type did not

- 348 affect SR-area and -isolation relationships as we did not find any interactive effects
- 349 of island area (or isolation) and the percentage cover of each land-use type (electronic
- 350 supplementary material, figures S2 and S3, table S14). In general, SR was higher in
- 351 farmland-dominated habitats than in forest-dominated habitats (electronic
- 352 supplementary material, figure S4a).
- 353

354 3.2 Effects of island area, isolation, and land-use types on bird phylogenetic and functional community structure

355

356	The overall phylogenetic and functional community structure (SES.MPD and
357	SES.MFD) was more clustered than expected by chance in most transects (figure 4),
358	indicating that phylogenetic and functional clustering of bird assemblages on all study
359	islands was pervasive. Community structure in farmland-dominated transects was less
360	clustered than forest-dominated transects (electronic supplementary material, figure
361	S4b). SES.MPD and SES.MFD did not vary systematically with island area and
362	isolation (electronic supplementary material, table S13), but they both increased with
363	increasing farmland cover (SES.MPD: $t = 4.39$, $df = 47.3$, $p < 0.001$; SES.MFD: $t =$
364	3.47, $df = 66.6$, $p < 0.001$; electronic supplementary material, figure S5c) and
365	settlement cover (SES.MPD: $t = 2$, $df = 57.4$, $p = 0.05$; SES.MFD: $t = 1.78$, $df = 68$, p
366	= 0.08; electronic supplementary material, figure S5e), and decreased with increasing
367	forest cover (SES.MPD: $t = -3.78$, $df = 42.8$, $p < 0.001$; SES.MFD: $t = -2.96$, $df = 61$,
368	p < 0.01; electronic supplementary material, figure S5d).
369	Furthermore, SES.MFD was affected by the interactive effect of island area and
370	farmland cover ($t = 2.17$, $df = 65$, $p = 0.03$; electronic supplementary material, table
371	S14). Transects with a larger proportion of farmland on larger islands and transects
372	with less farmland cover on smaller islands tended to support bird assemblages with
373	less clustered functional structure (figure 4e). Additionally, the patterns of bird
374	phylogenetic and functional community structure (i.e., SES.MPD and SES.MFD)
375	showed similar trends along the interactive gradient of area and isolation with forest
376	cover (island area x forest cover for SES.MPD: $t = -2.8$, $df = 65.6$, $p < 0.01$, for

377	SES.MFD: $t = -2.8$, $df = 64.6$, $p < 0.01$; isolation x forest cover for SES.MPD: $t =$
378	2.92, $df = 58.5$, $p < 0.01$, for SES.MFD: $t = 2.25$, $df = 63.7$, $p = 0.03$; electronic
379	supplementary material, table S14). This indicates clustered community structure in
380	transects on large and close islands with a high proportion of forest cover, as well as
381	clustered community structure on small and remote islands with a low proportion of
382	forest cover (figure 4c, 4d, 4g, and 4h; electronic supplementary material, figures S6b
383	S6e, S7b, and S7e). Settlement cover did not exhibit an interactive effect with island
384	attributes on bird community structure (electronic supplementary material, figures
385	S6c, S6f, S7c, and S7f, table S14).

386

387 4 Discussion

388 Human activities have extensively modified habitats on 75% of the global land 389 surface, including many islands worldwide. However, assessing the impact of land-390 use change on islands presents challenges as it is generally unclear whether there are 391 interactive effects between land-use change and natural island attributes (e.g., area 392 and isolation) on the diversity and community assembly of island faunas. To answer this question, we undertook sampling across multiple habitats on islands within the 393 394 largest Chinese archipelago. 395 We found that both the phylogenetic and functional structure (SES.MPD and

396 SES.MFD) of island bird assemblages were clustered relative to random assemblages.

397 Specifically, bird assemblages in farmland-dominated habitats tended to be more

398 phylogenetically and functionally clustered on small islands. In contrast, forest bird

399 assemblages were more clustered on large islands and islands close to the mainland.

400 These results suggest that there is indeed an interaction between land-use change and

401 classic island biogeographic variables in shaping bird community assembly.

402

419	on several remote islands with a distance > 65 km from the mainland. Additionally,
420	extended analysis showed that remote islands possess bird species with higher
421	average dispersal abilities (measured by the hand-wing index, see electronic
422	supplementary material, text S5 and figure S9b for more details). Taken together,
423	these results indicate that a 'landscape of fear' and/or limited dispersal ability may
424	restrict the distribution of some species during the breeding season in our study
425	system [30].
426	Surprisingly, bird species richness was relatively high in transects dominated by
427	farmland, despite the fact that there are more bird species preferring forest habitats
428	[41 of 96 species] than farmland habitats [27 of 96 species] (electronic supplementary
429	material, table S2). We also found bird species richness increased with the proportion
430	of human-modified habitats (i.e., farmland and settlement), while decreasing with
431	increasing forest cover. These findings contrast with studies conducted on mainland
432	areas, where forests should typically have more species than surrounding agricultural
433	lands [21,73]. Several reasons may explain these patterns. (a) On inhabited islands,
434	the resources in farmland and settlements (e.g., food and nesting substrate) may be
435	abundant and relatively easy to access for certain species. Thus, many species may be
436	able to utilize the human-modified habitats, leading to higher species richness in sites
437	with a greater coverage of farmland and settlements. In this study, many species
438	disproportionately occur in farmland-dominated habitats, including common moorhen
439	[Gallinula chloropus], scaly-breasted munia [Lonchura punctulata], and intermediate

440	egret [Mesophoyx intermedia]) — all species that are known to associate strongly
441	with agricultural habitats [73] (electronic supplementary material, table S2, figures
442	S10 and S11). (b) Although we found more forest bird species in our study islands
443	(electronic supplementary material, table S2), bird species in forest-dominated
444	habitats have lower average dispersal ability (electronic supplementary material,
445	figure S9d), indicating that forest species tend to be more dispersal limited. In
446	contrast, bird species in farmland habitats had higher average dispersal ability
447	(electronic supplementary material, figure S9c), indicating that bird species in
448	farmland have better abilities to disperse between habitat patches, and in turn lead to
449	higher observed richness. (c) Alternatively, it is also possible that forests are
450	important for birds to roost at night, but our surveys were only conducted in the
451	daytime, ignoring this function forests provide.
452	
453	4.2 Bird phylogenetic and functional community structure across island
454	attributes and land-use types
455	Phylogenetic and functional community structure (<i>i.e.</i> , SES.MPD and SES.MFD) was
456	clustered on almost all islands, indicating the possibility that environmental filtering
457	is an important assembly process in the archipelago [27]. However, unlike species
458	richness, bird community structure did not show clear patterns along the gradients of
459	island area and isolation, indicating increasing phylogenetic and functional
460	redundancy with increasing species richness. In other words, the higher species

461 richness of bird assemblages on large and close islands does not involve the addition462 of extra functional roles.

463	As shown above, we found that there was an interaction between the structure-
464	area and -isolation relationships and land-use types. Specifically, bird assemblages in
465	farmland-dominated habitats on small islands were more phylogenetically and
466	functionally clustered than larger ones, consistent with our prediction (figures 1c, 4a,
467	and 4e; electronic supplementary material, figures S6a and S7a). Farmland on small
468	islands often contains limited types of crops. For example, on island S31, the crops
469	are mainly vegetables that are sparsely cultivated by local farmers (electronic
470	supplementary material, figure S12). As a result, only disturbance-tolerant bird
471	species can persist in such habitats. Indeed, we found species on this transect are all
472	passerines, and several common (i.e., present on other farmland habitats) but
473	functionally and phylogenetically distinct species in this region were lacking, such as
474	cattle egret (Bubulcus ibis) and Chinese pond heron (Ardeola bacchus) (electronic
475	supplementary material, figures S10 and S11), resulting in a highly redundant
476	community [36]. Conversely, farmland on large islands may have higher net primary
477	productivity due to more diverse agricultures and more intensive management
478	[74,75]. The greater niche opportunities provided by farmland on large islands not
479	only support more species, but also support species with a broader range of life-
480	history traits [76], leading to less clustered structure.

481	Contrary to our expectation, assemblages in forest-dominated habitats were more
482	clustered on large and close islands, and we observed a positive functional and
483	phylogenetic clustering-area relationship on islands covered by forest (figures 4c and
484	4g). A possible explanation is that, on large islands, while the amount of total forested
485	area is often relatively large, vegetation composition is similar (electronic
486	supplementary material, figure S13) and often fragmented, separated by roads,
487	villages, and farmland [37,38]. This fragmented forest mosaic is likely only able to
488	support a set of phylogenetically and functionally similar species that are able to
489	persist in these conditions (i.e., high species turnover but low phylogenetic and
490	functional turnover) [26], leading to high clustering on forest transects on large
491	islands.

492 The relationship between bird community structure in forest-dominated habitats 493 and isolation is broadly consistent (*i.e.*, decreasing clustering with increasing isolation). 494 In this study, forest-dominated habitats on remote islands contain several species that 495 are functionally and phylogenetically distinct from other species (electronic supplementary material, figures S8 and S9), such as Eurasian hoopoe (Upupa epops), 496 Chinese pond heron (A. bacchus), cattle egret (B. ibis), and yellow bittern (Ixobrycus 497 498 sinensis). Most of these species are summer migrants and are known to be able to persist 499 in farmland habitats with shallow water [73]. We argue that they may preferentially 500 inhabit more remote islands to avoid the intense human disturbance and exploit food 501 resources in more pristine forests. It is worth noting that these species have relatively 502 long bills which may facilitate capturing mobile prey (*e.g.*, insects and reptiles) in forest 503 habitats [77]. In addition, some individuals may travel to islands close to the mainland 504 where they prefer to look for external food resources supplemented by farmland. 505 Consequently, only forest habitats on less isolated islands lack these distinct species, 506 resulting in a relatively high clustering pattern.

507

508 **4.3 Conservation implications**

509 We found that farmland-dominated habitats support more species than forest-510 dominated habitats on the study islands (electronic supplementary material, figure 511 S4). The importance of agricultural land in supporting substantial biodiversity in 512 fragmented landscapes on the mainland [12,78,79] is a key component of the 513 framework of countryside biogeography. Here, we moved a step further to identify 514 that farmland habitats also support high bird diversity on islands in our study system, 515 providing evidence that species can tolerate or thrive in insular human-modified 516 habitats [80]. Countryside island biogeography can thus provide valuable perspectives 517 for the conservation of island biodiversity, particularly on islands with large amounts 518 of human-modified habitats [81]. Importantly, we found that the effect of farmland 519 depends on the relative proportion of various land-use types, as well as the size of a 520 particular island. Birds in farmland-dominated habitats have relatively less clustered structure on large islands than in forest-dominated habitats and vice versa (figures 4a, 521 522 4c, 4e, and 4g). Meanwhile, forest-dominated habitats on remote islands also have

523	relatively less clustered bird assemblages (figures 4d and 4h). Thus, concerning
524	further anthropogenic development on the islands studied here, we argue that it is
525	better to leave small and remote islands – where the remaining natural forest habitat
526	can support relatively higher biodiversity – undeveloped.

527

528 **4.4 Caveats**

Our study is limited by the uneven sampling design across islands, necessitated by 529 530 logistical restrictions related to small island size. Although we conducted additional 531 analyses to account for this sampling effect (see electronic supplementary material, 532 text S3), our results should still be interpreted with caution as we cannot fully exclude 533 the sampling effect in the analyses. Additionally, our use of continuous proportional 534 land-use variables inherently produces collinearity issues (e.g., forest and farmland covers were negatively correlated: Pearson's r = -0.86). The existence of collinearity 535 536 issues results in the difficulty of interpreting the effect of cover type because an 537 observed effect of increasing farmland could actually be an effect of decreasing forest 538 cover, and vice versa. An alternative way to solve the collinearity issue is to use 539 categorical land-use variables (*i.e.*, designating transects as forest or farmland). However, categorical land-use variables will loss detailed information, such as the 540 541 pattern of community structure shifting along a gradient of forest/farmland cover (as shown in Figure 4). We suggest that further studies should pinpoint the location of 542

543 each bird record and measure point-based land uses to fully tease apart the precise544 effects of land-use types in this system.

545	The lower richness and clustered structure of bird communities in forest-
546	dominated habitats could also relate to the legacy effect associated with historical
547	landscape configurations [82,83]. Unfortunately, suitable historical land-use data were
548	unavailable to investigate this phenomenon. However, legacy effects in our study
549	archipelago should be relatively weak for several reasons. First, land-use change on
550	the study islands has a long history (~5,000 years), indicating contemporary
551	communities have had considerable time to respond to past modifications. Second, the
552	larger number of forest species in the species pool, including the pools that
553	incorporated nearby mainland species (electronic supplementary material, tables S2
554	and S15), indicates that historic human activities have not substantially restricted
555	these taxa from occupying study islands.
556	
557	5 Conclusion
558	Our results emphasize the need to better understand how anthropogenic effects and

standard island biogeographic variables interact to determine community assembly mechanisms in human-dominated island landscapes. Although the relationship between species richness and island area and isolation remained consistent across land use types, functional and phylogenetic community structure (measured by SES.MPD and SES.MFD) were higher in farmland-dominated habitats on large islands, illustrating the importance of farmland in sustaining island bird diversity. Examining the interactive
effect of land-use and island attributes, a novel frontier in countryside island
biogeography, provides a promising research avenue to better understand the
distribution of island biodiversity across human-dominated ecosystems, ultimately
enabling more accurate predictions of the future trajectory of biodiversity in the
Anthropocene.

572 This study was supported by National Nature Science Foundation of China (grant no.

573 32311520284, 32071545, 32101278, and 32371590), the Technology Innovation

574 Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural

575 Resources, and the Program for Professor of Special Appointment (Eastern Scholar)

576 (no. TP2020016).

577

578 **Competing Interest Statement:** The authors declare no conflict of interest.

579

580 **Data availability:** The data used in this study have been uploaded on Dryad (link:

581 https://datadryad.org/stash/share/38izdimqLPECiQW5Kd42Ct7aF6AzslwHx27JLF6b

582 mUw).

583

584 **References**

585	1.	Kier G, Kreft H, Lee TM, Jetz W, Ibisch PL, Nowicki C, et al. A global assessment of endemism
586		and species richness across island and mainland regions. Proceedings of the National Academy of
587		Sciences. 2009; 106(23):9322-7. (doi:10.1073/pnas.0810306106)
588	2.	Whittaker RJ, Fernández-Palacios JM, Matthews TJ, Borregaard MK, Triantis KA. Island
589		biogeography: Taking the long view of nature's laboratories. Science. 2017;
590		357(6354):eaam8326.
591	3.	Nogué S, Santos AMC, Birks HJB, Björck S, Castilla-Beltrán A, Connor S, et al. The human
592		dimension of biodiversity changes on islands. Science. 2021; 372(6541):488-91.
593		(doi:10.1126/science.abd6706)
594	4 .	Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, et al. Global effects of land
595		use on local terrestrial biodiversity. Nature. 2015; 520(7545):45-50. (doi:10.1038/nature14324)
596	5.	Castilla-Beltrán A, de Nascimento L, Fernández-Palacios J-M, Whittaker Robert J, Willis Kathy J,
597		Edwards M, et al. Anthropogenic transitions from forested to human-dominated landscapes in
598		southern Macaronesia. Proceedings of the National Academy of Sciences. 2021;
599		118(40):e2022215118. (doi:10.1073/pnas.2022215118)
600	6.	Rolett B, Diamond J. Environmental predictors of pre-European deforestation on Pacific islands.
601		Nature. 2004; 431(7007):443-6. (doi:10.1038/nature02801)
602	7.	Wood JR, Alcover JA, Blackburn TM, Bover P, Duncan RP, Hume JP, et al. Island extinctions:
603		processes, patterns, and potential for ecosystem restoration. Environmental Conservation. 2017;
604		44(4):348-58. Epub 2017/07/24. (doi:10.1017/S037689291700039X)
605	8 .	Stephens L, Fuller D, Boivin N, Rick T, Gauthier N, Kay A, et al. Archaeological assessment
606		reveals Earth's early transformation through land use. Science. 2019; 365(6456):897–902.
607		(doi:10.1126/science.aax1192)
608	9.	Helmus MR, Mahler DL, Losos JB. Island biogeography of the Anthropocene. Nature. 2014;
609		513(7519):543-6. (doi:10.1038/nature13739)
610	10.	MacArthur RH, Wilson EO. The theory of island biogeography. Princeton: Princeton University
611		Press; 1967.
612	11.	Mendenhall CD, Karp DS, Meyer CFJ, Hadly EA, Daily GC. Predicting biodiversity change and
613		averting collapse in agricultural landscapes. Nature. 2014; 509(7499):213-7.
614		(doi:10.1038/nature13139)
615	12.	Daily G. Countryside biogeography and the provision of ecosystem services: 104-113 (en)
616		RAVEN, P.(ed.) Nature and human society: The quest for a sustainable world. National Research
617		Council. National Academy Press, Washington, DC; 1997.
618	13.	Soulé ME. What is conservation biology? BioScience. 1985; 35(11):727-34.
619	14.	Gibson L, Lynam AJ, Bradshaw CJA, He F, Bickford DP, Woodruff DS, et al. Near-Complete
620		Extinction of Native Small Mammal Fauna 25 Years After Forest Fragmentation. Science. 2013;
621		341(6153):1508. (doi:10.1126/science.1240495)
622	15.	Picanço A, Rigal F, Matthews TJ, Cardoso P, Borges PAV. Impact of land-use change on flower-
623		visiting insect communities on an oceanic island. Insect Conservation and Diversity. 2017;
624		10(3):211–23. (doi:10.1111/icad.12216)

625	16.	Jesse WAM, Behm JE, Helmus MR, Ellers J. Human land use promotes the abundance and
626		diversity of exotic species on Caribbean islands. Global Change Biology. 2018; 24(10):4784-96.
627		(doi:10.1111/gcb.14334)
628	17.	Steibl S, Franke J, Laforsch C. Tourism and urban development as drivers for invertebrate
629		diversity loss on tropical islands. Royal Society Open Science. 2021; 8(10):210411.
630		(doi:10.1098/rsos.210411)
631	18 .	Etard A, Pigot AL, Newbold T. Intensive human land uses negatively affect vertebrate functional
632		diversity. Ecology Letters. 2022; 25(2):330-43. (doi:10.1111/ele.13926)
633	19.	Nowakowski AJ, Frishkoff LO, Thompson ME, Smith TM, Todd BD. Phylogenetic
634		homogenization of amphibian assemblages in human-altered habitats across the globe.
635		Proceedings of the National Academy of Sciences. 2018; 115(15):E3454.
636		(doi:10.1073/pnas.1714891115)
637	20 .	Pillay R, Venter M, Aragon-Osejo J, González-del-Pliego P, Hansen AJ, Watson JEM, et al.
638		Tropical forests are home to over half of the world's vertebrate species. Frontiers in Ecology and
639		the Environment. 2022; 20(1):10-5. (doi:10.1002/fee.2420)
640	21.	Frishkoff LO, Karp DS, M'Gonigle LK, Mendenhall CD, Zook J, Kremen C, et al. Loss of avian
641		phylogenetic diversity in neotropical agricultural systems. Science. 2014; 345(6202):1343.
642	22.	Hillerislambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM. Rethinking community
643		assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and
644		Systematics. 2012; 43(43):227–48.
645	23.	Carvajal-Endara S, Hendry AP, Emery NC, Davies TJ. Habitat filtering not dispersal limitation
646		shapes oceanic island floras: species assembly of the Galápagos archipelago. Ecology Letters.
647		2017; 20(4):495–504. (doi:10.1111/ele.12753)
648	24 .	Ottaviani G, Keppel G, Gotzenberger L, Harrison S, Opedal OH, Conti L, et al. Linking Plant
649		Functional Ecology to Island Biogeography. Trends in Plant Science. 2020; 25(4):329-39.
650		(doi:10.1016/j.tplants.2019.12.022)
651	25.	Triantis KA, Rigal F, Whittaker RJ, Hume JP, Sheard C, Poursanidis D, et al. Deterministic
652		assembly and anthropogenic extinctions drive convergence of island bird communities. Global
653		Ecology and Biogeography. 2022; 31(9):1741-55. (doi:10.1111/geb.13556)
654	26 .	Si X, Cadotte MW, Davies TJ, Antonelli A, Ding P, Svenning J-C, et al. Phylogenetic and
655		functional clustering illustrate the roles of adaptive radiation and dispersal filtering in jointly
656		shaping late-Quaternary mammal assemblages on oceanic islands. Ecology Letters. 2022;
657		25(5):1250-62. (doi:10.1111/ele.13997)
658	27 .	Cadotte MW, Tucker CM. Should Environmental Filtering be Abandoned? Trends in Ecology and
659		Evolution. 2017; 32(6):429-37. (doi:10.1016/j.tree.2017.03.004)
660	28 .	Webb CO, Ackerly DD, Mcpeek MA, Donoghue MJ. Phylogenies and Community Ecology.
661		Ecology, Evolution, and Systematics. 2002; 8(33):475-505.
662	29 .	Sobral FL, Cianciaruso MV. Functional and phylogenetic structure of forest and savanna bird
663		assemblages across spatial scales. Ecography. 2016; 39(6):533-41. (doi:10.1111/ecog.00903)
664	30 .	Si X, Cadotte MW, Zeng D, Baselga A, Zhao Y, Li J, et al. Functional and phylogenetic structure
665		of island bird communities. Journal of Animal Ecology. 2017; 86(3):532-42. (doi:10.1111/1365-
666		2656.12650)

667	31.	Ross SRPJ, Friedman NR, Janicki J, Economo EP. A test of trophic and functional island
668		biogeography theory with the avifauna of a continental archipelago. Journal of Animal Ecology.
669		2019; 88(9):1392-405. (doi:10.1111/1365-2656.13029)
670	32.	Matthews TJ, Rigal F, Kougioumoutzis K, Trigas P, Triantis KA. Unravelling the small-island
671		effect through phylogenetic community ecology. Journal of Biogeography. 2020; 47(11):2341-52.
672		(doi:/10.1111/jbi.13940)
673	33.	Zhao Y, Dunn RR, Zhou H, Si X, Ding P. Island area, not isolation, drives taxonomic,
674		phylogenetic and functional diversity of ants on land-bridge islands. Journal of Biogeography.
675		2020; 47(8):1627–37. (doi:10.1111/jbi.13860)
676	34.	Nogué S, de Nascimento L, Froyd CA, Wilmshurst JM, de Boer EJ, Coffey EED, et al. Island
677		biodiversity conservation needs palaeoecology. Nature Ecology & Evolution. 2017; 1(7):0181.
678		(doi:10.1038/s41559-017-0181)
679	35.	Liu J, Liu T, Zhou Y, Chen Y, Lu L, Jin X, et al. Plant diversity on islands in the Anthropocene:
680		Integrating the effects of the theory of island biogeography and human activities. Basic and
681		Applied Ecology. 2023; 72: 45-53. (doi:10.1016/j.baae.2023.07.006)
682	36 .	Cannon PG, Gilroy JJ, Tobias JA, Anderson A, Haugaasen T, Edwards DP. Land-sparing
683		agriculture sustains higher levels of avian functional diversity than land sharing. Global Change
684		Biology. 2019; 25(5):1576-90. (doi:10.1111/gcb.14601)
685	37.	The Editorial Board of the Island Chronicles of China. The Island Chronicles of China (Vol.
686		Zhejiang no. 1) — The northern part of Zhoushan Archipelago. Beijing: Ocean Press. 2014a. In
687		Chinese.
688	38 .	The Editorial Board of the Island Chronicles of China. The Island Chronicles of China (Vol.
689		Zhejiang no. 2) — The southern part of Zhoushan Archipelago. Beijing: Ocean Press. 2014b. In
690		Chinese.
691	39 .	Wang H, Chen J. Neolithic ruins discovered in Zhoushan archipelago. Archeology. 1983; 6(1):4-
692		9. In Chinese.
693	40 .	Cantor T. LIII.—General Features of Chusan, with remarks on the Flora and Fauna of that Island.
694		Journal of Natural History. 1842; 9(60):481–93.
695	41.	Zhuge Y, Jiang S, Zheng Z, Fang G. Preliminary Studies on Geographical Ecology of Birds and
696		Mammals on Some Islands of Zhejiang Province. Acta Zoologica Sinica. 1986; 31(1):74-85.
697	42 .	Liu C, Shi R, Zhang Y, Shen Y, Ma J, Wu L, et al. 2015: How Many Islands (Isles, Rocks), How
698		Large Land Areas, and How Long of Shorelines in the World?-Vector Data Based on Google
699		Earth Images. Journal of Global Change Data & Discovery. 2019; 3(2):124–48.
700	43 .	Schoereder JH, Galbiati C, Ribas CR, Sobrinho TG, Sperber CF, DeSouza O, et al. Should we use
701		proportional sampling for species-area studies? Journal of Biogeography. 2004; 31(8):1219-26.
702		(doi:10.1111/j.1365-2699.2004.01113.x)
703	44 .	Wang D, Zhao Y, Tang S, Liu X, Li W, Han P, et al. Nearby large islands diminish biodiversity of
704		the focal island by a negative target effect. Journal of Animal Ecology. 2023; 92(2):492–502.
705		(doi:10.1111/1365-2656.13856)
706	45 .	Zanaga D, Van De Kerchove R, Daems D, De Keersmaecker W, Brockmann C, Kirches G, et al.
707		ESA WorldCover 10 m 2021 v200. 2022. (doi: 10.5281/zenodo.7254221)

708	46 .	Wang Y, Song Y, Zhong Y, Chen C, Zhao Y, Zeng D, et al. A dataset on the life-history and
709		ecological traits of Chinese birds. Biodiversity Science. 2021; 29(9):1149-53. In Chinese with
710		English abstract.
711	47.	Pigot AL, Sheard C, Miller ET, Bregman TP, Freeman BG, Roll U, et al. Macroevolutionary
712		convergence connects morphological form to ecological function in birds. Nature Ecology &
713		Evolution. 2020; 4(2):230-9. (doi:10.1038/s41559-019-1070-4)
714	48 .	Zuur AF, Ieno EN, Elphick CS. A protocol for data exploration to avoid common statistical
715		problems. Methods in Ecology and Evolution. 2010; 1(1):3-14. (doi:10.1111/j.2041-
716		210X.2009.00001.x)
717	49 .	Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, et al. The global spectrum of
718		plant form and function. Nature. 2016; 529(7585):167-71. (doi:10.1038/nature16489)
719	50 .	Gascuel O. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence
720		data. Molecular Biology and Evolution. 1997; 14(7):685-95.
721		(doi:10.1093/oxfordjournals.molbev.a025808)
722	51.	Cardoso P, Guillerme T, Mammola S, Matthews TJ, Rigal F, Graco-Roza C, et al. Calculating
723		functional diversity metrics using neighbor-joining trees. bioRxiv. 2022:2022.11.27.518065.
724		(doi:10.1101/2022.11.27.518065)
725	52 .	Maire E, Grenouillet G, Brosse S, Villéger S. How many dimensions are needed to accurately
726		assess functional diversity? A pragmatic approach for assessing the quality of functional spaces.
727		Global Ecology and Biogeography. 2015; 24(6):728-40. (doi:10.1111/geb.12299)
728	53.	Cardoso P, Rigal F, Carvalho JC. BAT – Biodiversity Assessment Tools, an R package for the
729		measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity.
730		Methods in Ecology and Evolution. 2015; 6(2):232-6. (doi:10.1111/2041-210X.12310)
731	54.	Jetz W, Thomas Gavin H, Joy Jeffrey B, Redding David W, Hartmann K, Mooers Arne O. Global
732		Distribution and Conservation of Evolutionary Distinctness in Birds. Current Biology. 2014;
733		24(9):919-30.(doi:10.1016/j.cub.2014.03.011)
734	55.	Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian Phylogenetics with BEAUti and the
735		BEAST 1.7. Molecular Biology and Evolution. 2012; 29(8):1969–73.
736		(doi:10.1093/molbev/mss075)
737	56 .	Hsieh T, Ma K, Chao A. iNEXT: an R package for rarefaction and extrapolation of species
738		diversity (Hill numbers). Methods in Ecology and Evolution. 2016; 7(12):1451-6.
739	57.	Blomberg SP, Garland T, Ives AR. Testing for phylogenetic signal in comparative data:
740		behavioral traits are more labile. Evolution. 2003; 57(4):717–45.
741	58 .	Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999; 401:877-84.
742		(doi:10.1038/44766)
743	59 .	Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things).
744		Methods in Ecology and Evolution. 2012; 3(2):217–23. (doi:10.1111/j.2041-210X.2011.00169.x)
745	60 .	Cadotte MW, Carboni M, Si X, Tatsumi S. Do traits and phylogeny support congruent community
746		diversity patterns and assembly inferences? Journal of Ecology. 2019; 107(5):2065-77.
747		(doi:10.1111/1365-2745.13247)
748	61.	Swenson NG. Functional and Phylogenetic Ecology in R: Springer New York; 2014.

749	62 .	Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. Picante: R
750		tools for integrating phylogenies and ecology. Bioinformatics. 2010; 26(11):1463-4.
751		(doi:10.1093/bioinformatics/btq166)
752	63 .	Lessard J-P, Borregaard Michael K, Fordyce James A, Rahbek C, Weiser Michael D, Dunn
753		Robert R, et al. Strong influence of regional species pools on continent-wide structuring of local
754		communities. Proceedings of the Royal Society B: Biological Sciences. 2012; 279(1727):266-74.
755		(doi:10.1098/rspb.2011.0552)
756	64 .	Hébert K, Millien V, Lessard J-P. Source pool diversity and proximity shape the compositional
757		uniqueness of insular mammal assemblages worldwide. Journal of Biogeography. 2021;
758		48(9):2337-49. (doi:10.1111/jbi.14156)
759	65 .	Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. Journal
760		of Statistical Software. 2015; 67:1–48.
761	66 .	R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R
762		Foundation for Statistical Computing; 2021.
763	67 .	Wardle DA, Hörnberg G, Zackrisson O, Kalela-Brundin M, Coomes DA. Long-Term Effects of
764		Wildfire on Ecosystem Properties Across an Island Area Gradient. Science. 2003; 300(5621):972-
765		5. (doi:10.1126/science.1082709)
766	68 .	Matthews TJ, Triantis KA, Whittaker RJ. The species-area relationship: theory and application:
767		Cambridge University Press; 2021.
768	69 .	Chen C, Xu A, Wang Y. Area threshold and trait-environment associations of butterfly
769		assemblages in the Zhoushan Archipelago, China. Journal of Biogeography. 2021; 48(4):785–97.
770		(doi:10.1111/jbi.14037)
771	70 .	Li Y, Jari N, Li D. Nested distribution of amphibians in the Zhoushan archipelago, China: can
772		selective extinction cause nested subsets of species? Oecologia. 1998; 113(4):557-64.
773		(doi:10.1007/s004420050409)
774	71.	Yu J, Shen L, Li D, Guo S. Determinants of bryophyte species richness on the Zhoushan
775		Archipelago, China. Basic and Applied Ecology. 2019; 37:38-50.
776		(doi:10.1016/j.baae.2019.05.002)
777	72 .	Diamond JM. Flightlessness and fear of flying in island species. Nature. 1981; 293(5833):507-8.
778	73.	Hendershot JN, Smith JR, Anderson CB, Letten AD, Frishkoff LO, Zook JR, et al. Intensive
779		farming drives long-term shifts in avian community composition. Nature. 2020; 579(7799):393-6.
780		(doi:10.1038/s41586-020-2090-6)
781	74 .	Huang Y, Zhang W, Sun W, Zheng X. Net Primary Production of Chinese Croplands from 1950
782		to 1999. Ecological Applications. 2007; 17(3):692-701. (doi:10.1890/05-1792)
783	75.	Piao S, Fang J, Zhou L, Zhu B, Tan K, Tao S. Changes in vegetation net primary productivity
784		from 1982 to 1999 in China. Global Biogeochemical Cycles. 2005; 19(2).
785		(doi:10.1029/2004GB002274)
786	76 .	Estrada-Carmona N, Sánchez AC, Remans R, Jones SK. Complex agricultural landscapes host
787		more biodiversity than simple ones: A global meta-analysis. Proceedings of the National
788		Academy of Sciences. 2022; 119(38):e2203385119. (doi:10.1073/pnas.2203385119)

789 77. Herrel A, Podos J, Huber SK, Hendry AP. Bite performance and morphology in a population of 790 Darwin's finches: implications for the evolution of beak shape. Functional Ecology. 2005; 791 19(1):43-8. (doi:10.1111/j.0269-8463.2005.00923.x) 792 78. Mendenhall CD, Frishkoff LO, Santos-Barrera G, Pacheco J, Mesfun E, Quijano FM, et al. 793 Countryside biogeography of Neotropical reptiles and amphibians. Ecology. 2014; 95(4):856-70. 794 (doi:10.1890/12-2017.1) 795 79. Frishkoff LO, Ke A, Martins IS, Olimpi EM, Karp DS. Countryside Biogeography: the Controls 796 of Species Distributions in Human-Dominated Landscapes. Current Landscape Ecology Reports. 797 2019; 4(2):15-30. (doi:10.1007/s40823-019-00037-5) 798 80. Frishkoff LO, Hadly EA, Daily GC. Thermal niche predicts tolerance to habitat conversion in 799 tropical amphibians and reptiles. Global Change Biology. 2015; 21(11):3901-16. 800 (doi:10.1111/gcb.13016) 801 81. Martin DA, Andrianisaina F, Fulgence TR, Osen K, Rakotomalala AANA, Raveloaritiana E, et al. 802 Land-use trajectories for sustainable land system transformations: Identifying leverage points in a 803 global biodiversity hotspot. Proceedings of the National Academy of Sciences. 2022; 804 119(7):e2107747119. (doi:10.1073/pnas.2107747119) 805 82. Le Provost G, Badenhausser I, Le Bagousse-Pinguet Y, Clough Y, Henckel L, Violle C, et al. 806 Land-use history impacts functional diversity across multiple trophic groups. Proceedings of the 807 National Academy of Sciences. 2020; 117(3):1573-9. (doi:10.1073/pnas.1910023117) 808 83. García-Navas V, Thuiller W. Farmland bird assemblages exhibit higher functional and 809 phylogenetic diversity than forest assemblages in France. Journal of Biogeography. 2020; 810 47(11):2392-404. (doi:10.1111/jbi.13950)