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Abstract: Anthropogenic activities have reshaped biodiversity on islands worldwide. 23 

However, it remains unclear how island attributes and land-use change interactively 24 

shape multiple facets of island biodiversity through community assembly processes. 25 

To answer this, we conducted bird surveys in various land-use types (mainly forest 26 

and farmland) using transects on 34 oceanic land-bridge islands in the largest 27 

archipelago of China. We found that bird species richness increases with island area 28 

and decreases with isolation, regardless of the intensity of land-use change. However, 29 

forest-dominated habitats exhibited lower richness than farmland-dominated habitats. 30 

Island bird assemblages generally comprised species that share more similar traits or 31 

evolutionary histories (i.e., functional and/or phylogenetic clustering) than expected if 32 

assemblages were randomly assembled. Contrary to our expectations, we observed 33 

that bird assemblages in forest-dominated habitats were more clustered on large and 34 

close islands, whereas assemblages in farmland-dominated habitats were more 35 

clustered on small islands. These contrasting results indicate that land-use change 36 

interacts with island biogeography to alter the community assembly of birds on 37 

inhabited islands. Our findings emphasize the importance of incorporating human-38 

modified habitats when examining the community assembly of island biota, and 39 

further suggest that agricultural landscapes on large islands may play essential roles in 40 

protecting countryside island biodiversity. 41 

Keywords: Anthropocene, biodiversity conservation, countryside island 42 

biogeography, farmland, functional trait, oceanic island 43 



1. Introduction 44 

Islands are hotspots of biodiversity that make up 5.3% of the global land area but 45 

support around 20% of the world’s species [1,2]. However, the decline and turnover 46 

of biodiversity on islands due to anthropogenic activities are more rapid than 47 

anywhere else [3]. A primary driver of island biodiversity decline is land-use change 48 

[4,5], especially the conversion of natural forests into agricultural lands and 49 

settlements [6-8]. Therefore, it is critical to disentangle the effects of human activities 50 

on island biodiversity from those of natural biophysical island characteristics [9] to 51 

better understand the drivers of biodiversity loss and to inform conservation strategies 52 

aimed at mitigating further biodiversity declines. 53 

The Equilibrium Theory of Island Biogeography (hereafter ETIB) postulates that 54 

larger islands have lower extinction rates (i.e., area effect) and more remote islands 55 

have lower colonization rates (i.e., distance effect) [10], resulting in the positive 56 

species–area and negative species–isolation relationships. In contrast to ETIB, which 57 

is generally discussed in the context of biodiversity in natural habitats, countryside 58 

biogeography highlights the importance of human-dominated landscapes (e.g., 59 

farmland habitats) in supporting biodiversity [11,12]. Linking countryside 60 

biogeography and island biogeography thus provides an alternative framework, 61 

namely countryside island biogeography, which can be used to frame conservation 62 

science in human-dominated landscapes on inhabited islands [13,14]. To date, few 63 

studies have explored how human-modified habitats affect species diversity patterns 64 



in true island systems (i.e., islands surrounded by water). Moreover, these studies 65 

often do so by surveying only one or a small number of island(s) [15-17], probably 66 

due to the efforts required to sample multiple habitats across different islands. To the 67 

best of our knowledge, no study has explored the interactive effect of island 68 

biogeography (e.g., island area and isolation) and land-use change on biodiversity 69 

across multiple inhabited true islands –– a key component of countryside island 70 

biogeography. 71 

In naturally forested regions, ecological theory predicts that all else being equal 72 

farmland habitats harbour lower richness than forest habitats because they provide 73 

fewer complex niches and resources, and have generally been present for a much 74 

shorter period of time than adjacent forests (i.e., there has been little time for new taxa 75 

to originate via speciation), especially on small and remote islands (figure 1a) [18-76 

21]. In other words, species richness on small and remote islands should be more 77 

affected by land-use change than on large and close islands (i.e., there is expected to 78 

be an interactive effect between island characteristics and land-use change) (figure 79 

1b).  80 

Clarifying the processes and mechanisms underpinning community assembly is 81 

key to understanding the maintenance of biodiversity [22]. Researchers have recently 82 

incorporated species traits and evolutionary histories into ETIB to try to better 83 

understand community assembly processes on islands [23,24]. Suppose species with 84 

strong dispersal abilities are more likely to successfully colonise islands and/or that 85 



the subsequent probability of survival is related to specific habitat availability on 86 

different islands (e.g., the availability of mature trees on islands is essential for tree-87 

roosting species). Under these circumstances, relative to a larger species pool, insular 88 

assemblages will comprise a subset of species that share similar functional traits (i.e., 89 

functional clustering) [25,26] which confer a survival advantage in specific insular 90 

environments [27]. If these traits are phylogenetically conserved, which is generally 91 

common [28], insular assemblages will also comprise groups of species that are more 92 

similar in terms of their evolutionary history than expected (i.e., phylogenetic 93 

clustering). A contrasting theoretical prediction is that closely related species that 94 

share similar traits or resource requirements are more likely to compete due to the 95 

limited resource on (particularly small) islands [29]. In this case, island biotas are 96 

expected to comprise species with distinct traits and/or evolutionary histories (i.e., 97 

functional and/or phylogenetic overdispersion) [25,26] through competitive exclusion 98 

of closely related species. However, empirical studies of various taxa have found the 99 

structure of island assemblages is, in general, phylogenetically and functionally 100 

clustered [26,30,31]. Given the presence of severe environmental filters and limited 101 

habitat diversity, in addition to the increased role of dispersal filtering, on small and 102 

remote islands, one may expect community structure on these types of islands to be 103 

even more phylogenetically and functionally clustered [32] (figure 1c). As such, we 104 

may expect that community structure patterns will change across island area and 105 

isolation gradients (i.e., structure–area and structure–isolation relationships). 106 



The aforementioned expectations relate to assemblages on islands that still 107 

maintain full forest cover [33]. However, land-use change, a feature of almost all 108 

inhabited islands globally, may impact community assembly in insular biotas, leading 109 

to altered community structure. The transformation of forests to farmland typically 110 

reduces habitat diversity and complexity at certain scales (e.g., per transect), resulting 111 

in more homogenised assemblages in farmland, especially on large and close islands 112 

where human activities are more frequent [34,35]. Thus, we predict that community 113 

structure in farmland-dominated habitats on islands will be even more clustered (i.e., 114 

species are more closely related and functionally similar than expected) than in forest-115 

dominated habitats, as only a few insular species can likely tolerate significant human 116 

disturbance (i.e., the conversion of forest to farmland acts as a strong environmental 117 

filter) [18,36]. 118 

In this study, we examined whether there are interactive effects of land-use type 119 

and island attributes (area and isolation) on bird assemblages in the Zhoushan 120 

Archipelago, the largest archipelago in China with > 1,000 continental (oceanic land-121 

bridge) islands. To address this question, we surveyed birds during the breeding 122 

season along transects with varying proportions of land-use types (primarily forest 123 

and farmland) on 34 islands that span a gradient of island area and isolation in the 124 

archipelago. We used these data to test three predictions. 1) The species richness of 125 

bird assemblages will increase with island area and decrease with isolation, in 126 

accordance with the predictions of ETIB (figure 1b). 2) The phylogenetic and 127 



functional community structure of bird assemblages will be clustered on the study 128 

islands, and the degree of clustering will decrease with island area and increase with 129 

isolation (figure 1c). 3) There will be an interactive effect of land-use change (i.e., the 130 

presence of human-modified habitats) and island biogeographic variables on insular 131 

bird richness and community assembly. Specifically, the species–area relationship and 132 

species–isolation relationship are expected to be steeper along transects with an 133 

increasing proportion of farmland and a decreasing proportion of forest (figure 1b). In 134 

addition, birds inhabiting farmland-dominated transects are predicted to be more 135 

compositionally similar across islands (i.e., phylogenetic and functional redundancy) 136 

compared to those in forest-dominated transects, resulting in flatter structure–area and 137 

structure–isolation relationships with increasing farmland cover along a transect 138 

(figure 1c). 139 

 140 

2. Methods  141 

2.1 Study site 142 

Our study is situated in the Zhoushan Archipelago (29°31′–31°04′N, 121°30′–143 

123°25′E), in eastern China (figure 2). The region belongs to the subtropical oceanic 144 

monsoon zone, with a strong seasonal climate (i.e., hot summers and cold winters). 145 

The average temperature between April to June in 2020 and 2021 (i.e., surveying 146 

period) was 20.73°C (data from China Meteorological Administration; 147 

http://lishi.tianqi.com). The subtropical evergreen broadleaf forest is the dominant 148 



vegetation on the islands of the Zhoushan Archipelago, along with coniferous forests, 149 

grasslands, and shrubs [37,38]. The Zhoushan Archipelago provides an excellent 150 

opportunity to test the interactive effects of human land use and island biophysical 151 

characteristics on island community diversity and assembly for a number of reasons. 152 

First, archaeological evidence indicates that humans have continuously occupied the 153 

archipelago since at least the Neolithic (i.e., 5,000 years ago) [39], resulting in 154 

complex landscapes (including some agricultural lands) on most islands. The primary 155 

agricultural crops cultivated on the islands include rice, maize, sweet potato, oilseed 156 

rape, as well as various vegetables and fruits, all of which are patchily distributed 157 

within and across islands (http://zstj.zhoushan.gov.cn/col/col1229615782/index.html). 158 

Second, background information on the region’s biota is well-known, given that 159 

research on the archipelago has been undertaken since the 1850s [40,41]. Lastly, as 160 

the focus is on birds, the effect of evolutionary processes (e.g., in situ speciation) can 161 

be largely ignored, given the relatively short geological history of the islands being 162 

separated from the mainland (about 7,000–9,000 years). 163 

We selected 34 islands across a gradient of island area and isolation (i.e., island 164 

size and the nearest coast-to-coast distance from each island to the mainland), and 165 

considering the habitat types present on the islands. In other words, we particularly 166 

looked for small and remote islands that have farmland habitats (e.g., Island S31, with 167 

area = 0.24 km2 and isolation = 65.82 km). We calculated island area and isolation 168 



using ArcGIS based on a meter-resolution dataset of global coastlines [42] (electronic 169 

supplementary material, table S1). 170 

 171 

2.2 Field survey and bird data 172 

We located transects for bird surveys on each island based on the available forest (i.e., 173 

the dominant vegetation along the transect is evergreen broadleaf forest) and farmland 174 

(i.e., the transect runs through multiple crops in farmers’ fields). The number of 175 

transects on each island was roughly proportional to island area [43]. The length of 176 

most transects was around 2 km, with a few being 1 km because of logistical 177 

restrictions (i.e., cliffs or inaccessible terrain on, the mostly smaller, islands) (see 178 

more details in electronic supplementary material, table S1). As a result, we set a total 179 

of 70 transects on 34 study islands. 180 

We conducted breeding bird surveys along each transect from April to June in 181 

2020 and 2021, respectively. During each breeding season, the survey was conducted 182 

twice within a one-month interval, which is the maximum effort we could afford in 183 

the field [44], so we undertook four replicated surveys for each transect during two 184 

sampling years. In each survey, at least two trained observers walked the transect at a 185 

constant speed (1–2 km/h depending on the terrain) while maintaining the overall 186 

surveying time of around 1.5 hours to make the sampling efforts comparable. The 187 

observers recorded the number of individuals of all bird species seen or heard within a 188 

50 m distance on both sides of the transect. Surveys ran from half an hour after dawn 189 



to 11:00 h, and from 15:00 h to half an hour before sunset. We did not conduct 190 

surveys when it was rainy or windy. 191 

All bird species recorded were native species (i.e., there are no introduced 192 

species in the study region). This study only considered breeding birds (resident and 193 

summer species) that mainly use terrestrial habitats on islands, excluding species that 194 

rely on aquatic habitats (e.g., diving birds, ducks, and gulls) or are only active at night 195 

(i.e., Caprimulgus indicus) (electronic supplementary material, table S2). 196 

 197 

2.3 Land-use types along each transect 198 

To assess the land-use types along each transect, we utilized the WorldCover 2021 199 

v200 product (https://esa-worldcover.org/en), which provides land-use information at 200 

a resolution of 10 m worldwide. The product includes 11 primary land-use classes and 201 

has an overall accuracy of 76.7% based on the validation report [45]. While our 202 

primary focus was on forest and farmland habitats, we also recognized the 203 

significance of human settlements as habitats for certain species, such as the barn 204 

swallow (Hirundo rustica) and red-rumped swallow (Hirundo daurica) on the study 205 

islands. Therefore, we selected three land-use types to represent the transect habitat 206 

composition: farmland, forest, and settlements. These three land-use types accounted 207 

for nearly 87% of the total land-use cover across the 70 transects. We manually 208 

checked and corrected the land-use type along each transect based on Google Earth 209 

https://esa-worldcover.org/en


and field observations, where necessary (electronic supplementary material, figure 210 

S1). 211 

To calculate the percentage cover of the three land-use types, we chose a 50-m 212 

buffer area. This buffer area was selected because we recorded bird observations 213 

within a 50 m distance on both sides of the transect. Note that we have also calculated 214 

the land-use cover using 100-m and 200-m buffer areas, and the results were 215 

qualitatively similar (electronic supplementary material, tables S3–S5). Therefore, for 216 

the subsequent analyses, we used the results obtained from 50-m buffer areas. We did 217 

not consider larger buffer areas as the study was conducted on islands – including 218 

many small islands – and using larger buffers would often result in the inclusion of 219 

large areas of water. 220 

 221 

2.4 Species traits and phylogeny 222 

For each species, we sourced data on body length, body mass, bill length, wing 223 

length, tail length, and tarsus length from a bird trait dataset specific to China [46]. 224 

The traits we chose are highly associated with birds’ ecological niches (i.e., diets and 225 

behaviours) [47] (See electronic supplementary material, text S1 for more details on 226 

the choice of traits and sources). Before conducting the analyses, we log10-227 

transformed body mass to stabilize the variance and to normalize the distribution [48]. 228 

Bill length, wing length, tail length, and tarsus length were divided by body length to 229 

ensure these trait values are independent of body size [49] (electronic supplementary 230 



material, table S6). Because body mass and body length were highly correlated 231 

(Pearson’s r = 0.92, p < 0.001), we excluded body length from the analyses. 232 

We then built a functional dendrogram using a modified version of neighbor-233 

joining clustering [50] based on a Gower dissimilarity distance matrix of the five 234 

morphological traits (scaled and centered). This clustering method minimizes 235 

functional space distortion [51], and we observed that the functional dendrogram 236 

provided a high quality representation of the distances between species in the Gower 237 

dissimilarity distance matrix (0.98, measured by the standardised inverse of mean 238 

squared deviation [52], with 1 representing the maximum quality). The functional 239 

dendrogram was built using the tree.build function in the ‘BAT’ package [53]. 240 

To obtain an avian phylogeny, we downloaded 5,000 posterior phylogenetic 241 

trees under the option of ‘Hackett All Species: a set of 10,000 trees with 9,993 OTUs 242 

each’ from BirdTree (http://birdtree.org) [54], including only the species recorded in 243 

our study. We then constructed a maximum clade credibility tree across 5,000 244 

pseudo-posterior samples using the software TreeAnnonator v1.8.2 [55]. The 245 

resulting consensus tree was used for subsequent phylogenetic analyses. 246 

 247 

2.5 Sampling completeness and phylogenetic signal 248 

Before undertaking statistical analyses, we tested the sampling completeness of each 249 

transect based on the species presence/absence matrix derived from four replicated 250 

surveys. The sampling completeness was calculated using the iNEXT function in the 251 

http://birdtree.org/


‘iNEXT’ package [56]. Most transects had relatively high sampling completeness, 252 

with the exception of a single small island (S33, 64%; electronic supplementary 253 

material, table S1). 254 

We estimated the phylogenetic signal of species traits (i.e., body mass, relative 255 

bill length, relative wing length, relative tail length, and relative tarsus length) with 256 

Blomberg's K [57] and Pagel's λ [58] using the phylosig function in the ‘phytools’ 257 

package [59]. All morphological traits had significant phylogenetic signals (p < 258 

0.001; electronic supplementary material, table S7), indicating that the selected traits 259 

are phylogenetically conserved. 260 

 261 

2.6 Metrics of bird richness and community structure  262 

We first calculated the number of species (species richness, SR) along each transect. 263 

To estimate phylogenetic community structure, we used the standardized effect size 264 

(SES) of mean pairwise phylogenetic distance (MPD), denoted as SES.MPD, which 265 

represents the phylogenetic relatedness of species within an assemblage [28]. 266 

Similarly, for functional community structure, we calculated the standardized effect 267 

size (SES) of mean pairwise functional distance (MFD), denoted as SES.MFD [60].  268 

MPD and MFD were calculated using our maximum clade credibility 269 

phylogenetic tree and functional dendrogram, respectively. The values of SES.MPD 270 

and SES.MFD were calculated using the ‘shuffling tip’ null model approach. This 271 

null model randomly shuffled the taxa labels of each phylogenetic tree or functional 272 



dendrogram (i.e., the species pool of the null model was the archipelago species list, 273 

see also below) while retaining the structure of the community data [61]. We ran the 274 

null model 999 times and recalculated the MPD and MFD of each randomised 275 

community. The equation of SES is: 276 

SES = (Obs - Meannull)/SDnull, 277 

where Obs is the observed MPD or MFD on each transect, and Meannull and SDnull are 278 

the mean and standard deviation values of 999 randomisations for the MPD and MFD 279 

of each transect. 280 

SES.MPD and SES.MFD measure species relatedness in the observed 281 

community compared to species randomly sampled from the species pool. 282 

Specifically, SES values of MPD and MFD < 0 suggest phylogenetic or functional 283 

clustering (species share similar traits or evolutionary histories), SES values > 0 284 

suggest phylogenetic or functional overdispersion (species share distinct traits or 285 

evolutionary histories), and SES values ≈ 0 indicate a random phylogenetic or 286 

functional community structure [28]. SES values less than –1.96 or greater than 1.96 287 

indicate significant clustering or overdispersion, respectively (α = 0.05). The 288 

SES.MPD and SES.MFD metrics were calculated using the ses.mpd function in 289 

‘picante’ package [62]. 290 

During our sampling, we found several species that occurred on all islands (e.g., 291 

light-vented bulbul [Pycnonotus sinensis]). Thus, based on the concept of dispersion-292 

field species pools [63], we considered the species pool to comprise all species that 293 



were observed on the study islands. However, we recognise that the selection of a 294 

specific species pool could potentially affect the community structure results [64]. To 295 

confirm the robustness of our results, we ran additional analyses where we expanded 296 

the species pool by incorporating bird species occurring on (i) the study islands but 297 

that were not sampled by us, and (ii) the surrounding mainland, based on a citizen 298 

bird surveying database (i.e., China Bird Report; http://www.birdreport.cn/), and in 299 

both cases recalculated the community structure metrics. We found that the results 300 

based on the different species pools are qualitatively the same. We thus only report in 301 

the main manuscript the findings from the analyses including all observed species 302 

from the study islands as the species pool. Please see electronic supplementary 303 

material, text S2 for more information about the results from analyses of alternative 304 

species pools. 305 

 306 

2.7 Statistical analyses 307 

Our study was conducted at the transect level (i.e., the unit of analysis is a transect), 308 

so we applied linear mixed-effect regression models (LMM), with island identity as a 309 

random effect (i.e., random intercept), to regress bird richness and community 310 

structure per transect against the fixed effects using the lmer function in the ‘lme4’ 311 

package [65]. To test if bird richness and community structure follow the predictions 312 

of the Equilibrium Theory of Island Biogeography, we used either island area or 313 

isolation as the fixed effect in the LMM. In a separate model, we used the percentage 314 



cover of each land-use type (forest, farmland, and settlement) as a fixed effect to test 315 

the bivariate relationships between bird richness and community structure and land-316 

use type. Finally, to test if there are any interactive effects of land-use change and 317 

island attributes on bird richness and community structure, we fitted a model with 318 

island area/isolation and the percentage cover of each land-use type, including an 319 

interaction term between island area/isolation and each land-use type (e.g., island area 320 

× farmland cover). Note we also conducted analyses using multivariate models (i.e., 321 

models contain island area, isolation, the percentage cover of forest, farmland, and 322 

settlement, as well as the interaction term between island area/isolation and each land-323 

use type as fixed effect) and the results are qualitatively the same as univariate models 324 

described above (see electronic supplementary material, text 3 and tables S8–S11). 325 

We thus put the results based on multivariate models into the supplementary material 326 

and only reported the results based on univariate models in the main text. Island area 327 

was log10-transformed to normalize model residuals. There were only weak 328 

correlations between the percentage cover of each land-use type and island area or 329 

isolation (|Pearson’s r| < 0.4; electronic supplementary material, table S12). Model 330 

residual assumptions were visually checked, and the residuals met the assumptions of 331 

linear models. All analyses were conducted in R version 4.1.2 [66]. 332 

 333 

3. Results 334 

3.1 Effect of island area, isolation, and land-use types on species richness 335 



Consistent with the predictions of the Equilibrium Theory of Island Biogeography, 336 

transect-level species richness (SR) significantly increased with island area (t = 3.22, 337 

df = 24.6, p < 0.01; figure 3a) and decreased with isolation (t = –6.33, df = 68, p < 338 

0.001; figure 3b), according to our LMMs. We note, however, the effect of island area 339 

on SR could be partially explained by the transect length (i.e., sampling effect) as we 340 

also found transect length had a positive effect on SR (please see electronic 341 

supplementary material, text S3 for more details).  342 

In addition, transect-level SR had significant relationships with the three land-343 

use types (electronic supplementary material, table S13). Specifically, SR increased 344 

with increasing farmland cover (t = 4.4, df = 41.5, p < 0.001; figure 3c) and settlement 345 

cover (t = 3.51, df = 46, p < 0.01; figure 3d), but decreased with increasing forest 346 

cover (t = –4.63, df = 41.9, p < 0.001; figure 3e). However, the land-use type did not 347 

affect SR–area and –isolation relationships as we did not find any interactive effects 348 

of island area (or isolation) and the percentage cover of each land-use type (electronic 349 

supplementary material, figures S2 and S3, table S14). In general, SR was higher in 350 

farmland-dominated habitats than in forest-dominated habitats (electronic 351 

supplementary material, figure S4a). 352 

 353 

3.2 Effects of island area, isolation, and land-use types on bird phylogenetic and 354 

functional community structure 355 



The overall phylogenetic and functional community structure (SES.MPD and 356 

SES.MFD) was more clustered than expected by chance in most transects (figure 4), 357 

indicating that phylogenetic and functional clustering of bird assemblages on all study 358 

islands was pervasive. Community structure in farmland-dominated transects was less 359 

clustered than forest-dominated transects (electronic supplementary material, figure 360 

S4b). SES.MPD and SES.MFD did not vary systematically with island area and 361 

isolation (electronic supplementary material, table S13), but they both increased with 362 

increasing farmland cover (SES.MPD: t = 4.39, df = 47.3, p < 0.001; SES.MFD: t = 363 

3.47, df = 66.6, p < 0.001; electronic supplementary material, figure S5c) and 364 

settlement cover (SES.MPD: t = 2, df = 57.4, p = 0.05; SES.MFD: t = 1.78, df = 68, p 365 

= 0.08; electronic supplementary material, figure S5e), and decreased with increasing 366 

forest cover (SES.MPD: t = –3.78, df = 42.8, p < 0.001; SES.MFD: t = –2.96, df = 61, 367 

p < 0.01; electronic supplementary material, figure S5d). 368 

Furthermore, SES.MFD was affected by the interactive effect of island area and 369 

farmland cover (t = 2.17, df = 65, p = 0.03; electronic supplementary material, table 370 

S14). Transects with a larger proportion of farmland on larger islands and transects 371 

with less farmland cover on smaller islands tended to support bird assemblages with 372 

less clustered functional structure (figure 4e). Additionally, the patterns of bird 373 

phylogenetic and functional community structure (i.e., SES.MPD and SES.MFD) 374 

showed similar trends along the interactive gradient of area and isolation with forest 375 

cover (island area x forest cover for SES.MPD: t = –2.8, df = 65.6, p < 0.01, for 376 



SES.MFD: t = –2.8, df = 64.6, p < 0.01; isolation x forest cover for SES.MPD: t = 377 

2.92, df = 58.5, p < 0.01, for SES.MFD: t = 2.25, df = 63.7, p = 0.03; electronic 378 

supplementary material, table S14). This indicates clustered community structure in 379 

transects on large and close islands with a high proportion of forest cover, as well as 380 

clustered community structure on small and remote islands with a low proportion of 381 

forest cover (figure 4c, 4d, 4g, and 4h; electronic supplementary material, figures S6b, 382 

S6e, S7b, and S7e). Settlement cover did not exhibit an interactive effect with island 383 

attributes on bird community structure (electronic supplementary material, figures 384 

S6c, S6f, S7c, and S7f, table S14). 385 

 386 

4 Discussion 387 

Human activities have extensively modified habitats on 75% of the global land 388 

surface, including many islands worldwide. However, assessing the impact of land-389 

use change on islands presents challenges as it is generally unclear whether there are 390 

interactive effects between land-use change and natural island attributes (e.g., area 391 

and isolation) on the diversity and community assembly of island faunas. To answer 392 

this question, we undertook sampling across multiple habitats on islands within the 393 

largest Chinese archipelago. 394 

We found that both the phylogenetic and functional structure (SES.MPD and 395 

SES.MFD) of island bird assemblages were clustered relative to random assemblages. 396 

Specifically, bird assemblages in farmland-dominated habitats tended to be more 397 



phylogenetically and functionally clustered on small islands. In contrast, forest bird 398 

assemblages were more clustered on large islands and islands close to the mainland. 399 

These results suggest that there is indeed an interaction between land-use change and 400 

classic island biogeographic variables in shaping bird community assembly.  401 

 402 

4.1 Variations in species richness across island attributes and land-use types 403 

We found positive species–area relationships and negative species–isolation 404 

relationships in this study (figure 3a; electronic supplementary material, text S4 and 405 

figure S8a, S8b). The positive species–area relationship is well-studied: larger islands 406 

harbour more species as they support larger populations and contain more diverse 407 

habitat types, a greater number of habitats, and more diverse resources [67,68]. This 408 

near-universal pattern has been observed in butterflies [69], frogs [70], and bryophyte 409 

[71] species in the same island system. 410 

Dispersal limitation may be a driver of the negative species–isolation 411 

relationships observed (see also [44] for a more comprehensive measures of isolation 412 

in examining dispersal limitation in the same archipelago). Although most bird 413 

species (especially the summer migrants; electronic supplementary material, table S2) 414 

can fly over open water, some species are seemingly unwilling to due to a natural fear 415 

of water [72]. For example, two summer migrants with good dispersal ability, the 416 

black bulbul (Hypsipetes leucocephalus) and Swinhoe's minivet (Pericrocotus 417 

cantonensis), are distributed widely across most of the study islands but do not occur 418 



on several remote islands with a distance > 65 km from the mainland. Additionally, 419 

extended analysis showed that remote islands possess bird species with higher 420 

average dispersal abilities (measured by the hand-wing index, see electronic 421 

supplementary material, text S5 and figure S9b for more details). Taken together, 422 

these results indicate that a ‘landscape of fear’ and/or limited dispersal ability may 423 

restrict the distribution of some species during the breeding season in our study 424 

system [30]. 425 

Surprisingly, bird species richness was relatively high in transects dominated by 426 

farmland, despite the fact that there are more bird species preferring forest habitats 427 

[41 of 96 species] than farmland habitats [27 of 96 species] (electronic supplementary 428 

material, table S2). We also found bird species richness increased with the proportion 429 

of human-modified habitats (i.e., farmland and settlement), while decreasing with 430 

increasing forest cover. These findings contrast with studies conducted on mainland 431 

areas, where forests should typically have more species than surrounding agricultural 432 

lands [21,73]. Several reasons may explain these patterns. (a) On inhabited islands, 433 

the resources in farmland and settlements (e.g., food and nesting substrate) may be 434 

abundant and relatively easy to access for certain species. Thus, many species may be 435 

able to utilize the human-modified habitats, leading to higher species richness in sites 436 

with a greater coverage of farmland and settlements. In this study, many species 437 

disproportionately occur in farmland-dominated habitats, including common moorhen 438 

[Gallinula chloropus], scaly-breasted munia [Lonchura punctulata], and intermediate 439 



egret [Mesophoyx intermedia]) –– all species that are known to associate strongly 440 

with agricultural habitats [73] (electronic supplementary material, table S2, figures 441 

S10 and S11). (b) Although we found more forest bird species in our study islands 442 

(electronic supplementary material, table S2), bird species in forest-dominated 443 

habitats have lower average dispersal ability (electronic supplementary material, 444 

figure S9d), indicating that forest species tend to be more dispersal limited. In 445 

contrast, bird species in farmland habitats had higher average dispersal ability 446 

(electronic supplementary material, figure S9c), indicating that bird species in 447 

farmland have better abilities to disperse between habitat patches, and in turn lead to 448 

higher observed richness. (c) Alternatively, it is also possible that forests are 449 

important for birds to roost at night, but our surveys were only conducted in the 450 

daytime, ignoring this function forests provide. 451 

 452 

4.2 Bird phylogenetic and functional community structure across island 453 

attributes and land-use types 454 

Phylogenetic and functional community structure (i.e., SES.MPD and SES.MFD) was 455 

clustered on almost all islands, indicating the possibility that environmental filtering 456 

is an important assembly process in the archipelago [27]. However, unlike species 457 

richness, bird community structure did not show clear patterns along the gradients of 458 

island area and isolation, indicating increasing phylogenetic and functional 459 

redundancy with increasing species richness. In other words, the higher species 460 



richness of bird assemblages on large and close islands does not involve the addition 461 

of extra functional roles.  462 

As shown above, we found that there was an interaction between the structure–463 

area and –isolation relationships and land-use types. Specifically, bird assemblages in 464 

farmland-dominated habitats on small islands were more phylogenetically and 465 

functionally clustered than larger ones, consistent with our prediction (figures 1c, 4a, 466 

and 4e; electronic supplementary material, figures S6a and S7a). Farmland on small 467 

islands often contains limited types of crops. For example, on island S31, the crops 468 

are mainly vegetables that are sparsely cultivated by local farmers (electronic 469 

supplementary material, figure S12). As a result, only disturbance-tolerant bird 470 

species can persist in such habitats. Indeed, we found species on this transect are all 471 

passerines, and several common (i.e., present on other farmland habitats) but 472 

functionally and phylogenetically distinct species in this region were lacking, such as 473 

cattle egret (Bubulcus ibis) and Chinese pond heron (Ardeola bacchus) (electronic 474 

supplementary material, figures S10 and S11), resulting in a highly redundant 475 

community [36]. Conversely, farmland on large islands may have higher net primary 476 

productivity due to more diverse agricultures and more intensive management 477 

[74,75]. The greater niche opportunities provided by farmland on large islands not 478 

only support more species, but also support species with a broader range of life-479 

history traits [76], leading to less clustered structure. 480 



Contrary to our expectation, assemblages in forest-dominated habitats were more 481 

clustered on large and close islands, and we observed a positive functional and 482 

phylogenetic clustering–area relationship on islands covered by forest (figures 4c and 483 

4g). A possible explanation is that, on large islands, while the amount of total forested 484 

area is often relatively large, vegetation composition is similar (electronic 485 

supplementary material, figure S13) and often fragmented, separated by roads, 486 

villages, and farmland [37,38]. This fragmented forest mosaic is likely only able to 487 

support a set of phylogenetically and functionally similar species that are able to 488 

persist in these conditions (i.e., high species turnover but low phylogenetic and 489 

functional turnover) [26], leading to high clustering on forest transects on large 490 

islands. 491 

The relationship between bird community structure in forest-dominated habitats 492 

and isolation is broadly consistent (i.e., decreasing clustering with increasing isolation). 493 

In this study, forest-dominated habitats on remote islands contain several species that 494 

are functionally and phylogenetically distinct from other species (electronic 495 

supplementary material, figures S8 and S9), such as Eurasian hoopoe (Upupa epops), 496 

Chinese pond heron (A. bacchus), cattle egret (B. ibis), and yellow bittern (Ixobrycus 497 

sinensis). Most of these species are summer migrants and are known to be able to persist 498 

in farmland habitats with shallow water [73]. We argue that they may preferentially 499 

inhabit more remote islands to avoid the intense human disturbance and exploit food 500 

resources in more pristine forests. It is worth noting that these species have relatively 501 



long bills which may facilitate capturing mobile prey (e.g., insects and reptiles) in forest 502 

habitats [77]. In addition, some individuals may travel to islands close to the mainland 503 

where they prefer to look for external food resources supplemented by farmland. 504 

Consequently, only forest habitats on less isolated islands lack these distinct species, 505 

resulting in a relatively high clustering pattern. 506 

 507 

4.3 Conservation implications 508 

We found that farmland-dominated habitats support more species than forest-509 

dominated habitats on the study islands (electronic supplementary material, figure 510 

S4). The importance of agricultural land in supporting substantial biodiversity in 511 

fragmented landscapes on the mainland [12,78,79] is a key component of the 512 

framework of countryside biogeography. Here, we moved a step further to identify 513 

that farmland habitats also support high bird diversity on islands in our study system, 514 

providing evidence that species can tolerate or thrive in insular human-modified 515 

habitats [80]. Countryside island biogeography can thus provide valuable perspectives 516 

for the conservation of island biodiversity, particularly on islands with large amounts 517 

of human-modified habitats [81]. Importantly, we found that the effect of farmland 518 

depends on the relative proportion of various land-use types, as well as the size of a 519 

particular island. Birds in farmland-dominated habitats have relatively less clustered 520 

structure on large islands than in forest-dominated habitats and vice versa (figures 4a, 521 

4c, 4e, and 4g). Meanwhile, forest-dominated habitats on remote islands also have 522 



relatively less clustered bird assemblages (figures 4d and 4h). Thus, concerning 523 

further anthropogenic development on the islands studied here, we argue that it is 524 

better to leave small and remote islands – where the remaining natural forest habitat 525 

can support relatively higher biodiversity – undeveloped. 526 

 527 

4.4 Caveats 528 

Our study is limited by the uneven sampling design across islands, necessitated by 529 

logistical restrictions related to small island size. Although we conducted additional 530 

analyses to account for this sampling effect (see electronic supplementary material, 531 

text S3), our results should still be interpreted with caution as we cannot fully exclude 532 

the sampling effect in the analyses. Additionally, our use of continuous proportional 533 

land-use variables inherently produces collinearity issues (e.g., forest and farmland 534 

covers were negatively correlated: Pearson’s r = –0.86). The existence of collinearity 535 

issues results in the difficulty of interpreting the effect of cover type because an 536 

observed effect of increasing farmland could actually be an effect of decreasing forest 537 

cover, and vice versa. An alternative way to solve the collinearity issue is to use 538 

categorical land-use variables (i.e., designating transects as forest or farmland). 539 

However, categorical land-use variables will loss detailed information, such as the 540 

pattern of community structure shifting along a gradient of forest/farmland cover (as 541 

shown in Figure 4). We suggest that further studies should pinpoint the location of 542 



each bird record and measure point-based land uses to fully tease apart the precise 543 

effects of land-use types in this system. 544 

The lower richness and clustered structure of bird communities in forest-545 

dominated habitats could also relate to the legacy effect associated with historical 546 

landscape configurations [82,83]. Unfortunately, suitable historical land-use data were 547 

unavailable to investigate this phenomenon. However, legacy effects in our study 548 

archipelago should be relatively weak for several reasons. First, land-use change on 549 

the study islands has a long history (~5,000 years), indicating contemporary 550 

communities have had considerable time to respond to past modifications. Second, the 551 

larger number of forest species in the species pool, including the pools that 552 

incorporated nearby mainland species (electronic supplementary material, tables S2 553 

and S15), indicates that historic human activities have not substantially restricted 554 

these taxa from occupying study islands. 555 

 556 

5 Conclusion 557 

Our results emphasize the need to better understand how anthropogenic effects and 558 

standard island biogeographic variables interact to determine community assembly 559 

mechanisms in human-dominated island landscapes. Although the relationship between 560 

species richness and island area and isolation remained consistent across land use types, 561 

functional and phylogenetic community structure (measured by SES.MPD and 562 

SES.MFD) were higher in farmland-dominated habitats on large islands, illustrating the 563 



importance of farmland in sustaining island bird diversity. Examining the interactive 564 

effect of land-use and island attributes, a novel frontier in countryside island 565 

biogeography, provides a promising research avenue to better understand the 566 

distribution of island biodiversity across human-dominated ecosystems, ultimately 567 

enabling more accurate predictions of the future trajectory of biodiversity in the 568 

Anthropocene. 569 
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