211 research outputs found

    Representing Alzheimer's Disease Progression via Deep Prototype Tree

    Full text link
    For decades, a variety of predictive approaches have been proposed and evaluated in terms of their predicting capability for Alzheimer's Disease (AD) and its precursor - mild cognitive impairment (MCI). Most of them focused on prediction or identification of statistical differences among different clinical groups or phases (e.g., longitudinal studies). The continuous nature of AD development and transition states between successive AD related stages have been overlooked, especially in binary or multi-class classification. Though a few progression models of AD have been studied recently, they mainly designed to determine and compare the order of specific biomarkers. How to effectively predict the individual patient's status within a wide spectrum of AD progression has been understudied. In this work, we developed a novel structure learning method to computationally model the continuum of AD progression as a tree structure. By conducting a novel prototype learning with a deep manner, we are able to capture intrinsic relations among different clinical groups as prototypes and represent them in a continuous process for AD development. We named this method as Deep Prototype Learning and the learned tree structure as Deep Prototype Tree - DPTree. DPTree represents different clinical stages as a trajectory reflecting AD progression and predict clinical status by projecting individuals onto this continuous trajectory. Through this way, DPTree can not only perform efficient prediction for patients at any stages of AD development (77.8% accuracy for five groups), but also provide more information by examining the projecting locations within the entire AD progression process.Comment: Submitted to Information Processing in Medical Imaging (IPMI) 202

    Exploring the Influence of Information Entropy Change in Learning Systems

    Full text link
    In this work, we explore the influence of entropy change in deep learning systems by adding noise to the inputs/latent features. The applications in this paper focus on deep learning tasks within computer vision, but the proposed theory can be further applied to other fields. Noise is conventionally viewed as a harmful perturbation in various deep learning architectures, such as convolutional neural networks (CNNs) and vision transformers (ViTs), as well as different learning tasks like image classification and transfer learning. However, this paper aims to rethink whether the conventional proposition always holds. We demonstrate that specific noise can boost the performance of various deep architectures under certain conditions. We theoretically prove the enhancement gained from positive noise by reducing the task complexity defined by information entropy and experimentally show the significant performance gain in large image datasets, such as the ImageNet. Herein, we use the information entropy to define the complexity of the task. We categorize the noise into two types, positive noise (PN) and harmful noise (HN), based on whether the noise can help reduce the complexity of the task. Extensive experiments of CNNs and ViTs have shown performance improvements by proactively injecting positive noise, where we achieved an unprecedented top 1 accuracy of over 95% on ImageNet. Both theoretical analysis and empirical evidence have confirmed that the presence of positive noise can benefit the learning process, while the traditionally perceived harmful noise indeed impairs deep learning models. The different roles of noise offer new explanations for deep models on specific tasks and provide a new paradigm for improving model performance. Moreover, it reminds us that we can influence the performance of learning systems via information entropy change.Comment: Information Entropy, CNN, Transforme

    Research on Fault Diagnosis Method Based on Rule Base Neural Network

    Get PDF
    The relationship between fault phenomenon and fault cause is always nonlinear, which influences the accuracy of fault location. And neural network is effective in dealing with nonlinear problem. In order to improve the efficiency of uncertain fault diagnosis based on neural network, a neural network fault diagnosis method based on rule base is put forward. At first, the structure of BP neural network is built and the learning rule is given. Then, the rule base is built by fuzzy theory. An improved fuzzy neural construction model is designed, in which the calculated methods of node function and membership function are also given. Simulation results confirm the effectiveness of this method
    • …
    corecore