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 Abstract—This paper compares the application of the Weibull 

distribution and the Crow-AMSAA (C-A) model to the analysis of 

cable joint failures. The procedures of how to use the two models 

to analyze failure data and to predict future number of failures 

have been described before the models are applied to a set of 

early-failure data. The data which include 16 failures and 1126 

suspensions were collected from a regional power supply company 

in China. It is observed that the Weibull and the C-A model 

produce opposite results in terms of β value when the dataset 

contains failures of multiple years where the failure rate in early 

years differs significantly from those in later period. The paper 

shows that, when applying the C-A model, separating those data 

into subsections and analyzing them independently can yield 

useful information. Recent failure data can better reflect the 

current state of cable joints. The paper also proves that the 

Weibull distribution provides more reliable results in the analysis 

of early-failure data. The results of this paper should help utility 

asset managers to better analyze their past failure data. 

 

Index Terms—Weibull; Crow-AMSAA; early-failure; failure 

prediction; power cables, asset management 

I. INTRODUCTION 

ower cables and cable accessories are subject to 

electrical, thermal, mechanical, and environmental stresses 

on a constant basis when in service. These stresses together with 

poor practice in installation and maintenance often lead to 

insulation degradation or defects causing cable breakdowns [1]. 

Like other power systems assets, the lifetime of cable and 

accessory failures obey the ―bathtub curve‖ [2] which can be 

divided into ―burn-in phase‖ with a decreasing rate of early 

failures (0~5 years), ―the useful life phase‖ with a low number 

of casual failures (5~25years) and ―the wear-out phase‖ with an 

increasing rate of aging related failures (>25years) [3]. Early 

failures usually result from imperfections during manufacturing 

process, defects associated with poor installation practice and 

third party damages. During the useful life phase, failures 

happen occasionally due to various reasons such as third party 

damage, wear-out of components and environmental stress etc. 
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As time progresses, the bulk dielectric strength degrades, and 

artifacts such as water ingress and detachments at material 

interfaces raise local stress. The net effect appears as aging, the 

rate of which depends on many factors such as voltage, thermal 

stresses, maintenance, system age, cable system technology, and 

environment [4]. 

In developing countries, the cable network is relatively new 

and still growing rapidly. Take China for example, the cables 

laid down over the last 10 years account for more than half of 

the total volumes [5]. Most cable failures are due to third party 

damages, manufacturing and poor installation problems [6]. In 

contrast, in developed countries such as in the UK, installation 

peaked in 1950s and 1960s [7]. A large proportion of the cable 

assets have already expired or are approaching their end of 

design life, where a higher proportion of age related failures 

have been reported [8]. Despite the differences in failure 

mechanisms, failure prediction is important for cable asset 

managers to arrange appropriate maintenance programs under 

both situations. 

Among statistical models, the Weibull distribution and the 

Crow-Army Material System Analysis Activity (AMSAA), 

have been used to carry out failure predictions. The Weibull 

distribution has been used by R.M. Bucci [9] to make failure 

prediction of underground distribution feeder cables where data 

were simply sorted according to the age of failed cables without 

considering the modes or causes of the failures. John P. 

Ainscough P. E [10] used the Weibull distribution to predict 

medium voltage underground distribution cable failures. The 

C-A model was employed by Yancy Gill [11-12] to establish a 

maintenance model of aging cable. Paul Barringer, P.E. [13] 

compared the Weibull distribution with the C-A model and 

concluded that the C-A model worked well with mixed failure 

modes while the Weibull distribution was a powerful single 

failure mode tool. These papers mainly focused on age-related 

data, while the performances of the Weibull and C-A model on 

early-failure data have not yet been studied. One of the main 

objectives of early-failure data analysis is to establish a pattern 

of early failures [14].  

In this paper, early cable failure data, collected from a 

regional power supply company in China, is divided into groups 

based on the failure causes. As the work presented here focuses 

on early-failure data, age related failure data are treated as 

suspensions. The procedures concerning how to apply the 

Weibull distribution and the C-A model to predict failures are 

thoroughly analyzed and described. The performances of two 
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models in dealing with early-failure data are investigated and 

critically compared. 

II. STATISTICAL MODELS 

A. Weibull Distribution  

The Weibull distribution is perhaps the most widely used 

model in the analysis of reliability and failure data. It gives the 

lifetime distribution of objects and was originally proposed to 

quantify fatigue data [15-16], but it is also used in the analysis of 

systems involving the "weakest link" such as insulations in 

power plant. 

Its flexibility to model all the three phases of a reliability 

bathtub curve makes it attractive to reliability and maintenance 

engineers. It is found that it can fit most lifetime data better than 

other distributions and is particularly valuable for relatively 

small samples of the data which are often encountered by 

maintenance engineers. 

There are two versions of the Weibull model, namely the 

two-parameter and the three-parameter models. 

Mathematically, the cumulative probability of failure of the 

two-parameter model, as a function of time, is given in Equation 

(1). The three parameter model, as given in Equation (2), has an 

introduction of a location parameter into the two-parameter 

model [17-18]. 
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Where F(t) is the cumulative distribution function or the 

probability of failure between time 0 and t. R(t) is the reliability 

or probability of not failing between 0 and time t. η is the scale 

parameter, β is the shape parameter and g is the location 

parameter. If β is less than 1, it means that the failure rate is 

decreasing and the asset group under analysis is in early-failure 

stage. If β is greater than 1, it indicates an increasing failure rate 

and that the asset has started to age or has already aged. If β is 

equal to 1, it stands for a constant failure rate and that the asset 

group is in a period of useful service age. 

The probability density function (PDF) of the two parameter 

model is the derivative of equation (1), which is given in 

Equation (4). 
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The probability density function defines the life probability 

distribution of a population. The area under this curve is equal 

to unity (in terms of probability) or 100% which shows all life 

possibilities. The probability density function is similar to the 

normal curve, with a typical bell shape. The only difference 

which makes the Weibull better for describing life of insulation 

is that, it has no negative values and can assign a starting point 

(below which there are no failures) to the life of insulation 

material. But the normal curve has values from negative to 

positive infinity [11]. 

The failure or hazard rate function is given in Equation (5).  
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Figure 1 gives an illustration of the Weibull functions which 

include f(t), h(t) and F(t). Here the unit of horizontal axis is in 

calendar year. The left vertical corresponds with f(t) and the 

right vertical signifies h(t) and F(t).  
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Figure 1  Illustration of the Weibull functions 

 

B. Crow-AMSAA model 

The C-A model was originally developed to track and 

quantify the reliability growth of preliminary product designs or 

in manufacturing processes to help in production of a product or 

process when adequate reliability is achieved [16]. However, 

over the past several years, the C-A model has been used 

increasingly as a tool to monitor reliability and to forecast 

failures/faults in field mechanical and electrical systems. The 

advantage of the C-A model is that it models repairable systems. 

This is an important distinction, as C-A can model a component 

that has failed and been repaired multiple times, while the 

Weibull distribution can only be used to model the first failure. 

The C-A model is also capable of handling a mixture of failure 

modes whereas the Weibull model works best with one, perhaps 

two failure modes only [12]. This reduces the requirement for 

detailed information of time to first failure. The forecast of 

overall failures is based on cumulative time against cumulative 

failures and does not need to consider failure modes. 

The process where repairs are assumed to return the 

equipment to the level at which it was operating before failure is 

known as the Non-Homogeneous Poisson Process (NHPP)[19]. 

In this case, the process is only time homogeneous when failure 

rate is a constant over a specific period of time. It can be shown, 

however, that, if t1 < t2 <…, are the time at which failure events 

occur, then failure rate is a constant between the time t1 and t2. 

The expected number of failures in a selected interval is as 

following. 
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The failure intensity function of the model is given as: 



 1( )t t   (λ and β>0)  (7) 

Therefore, the cumulative number of failures as a function of 

cumulative failure time can be expressed as: 

 ( )N t t  (8) 

The reciprocal of ρ(t) is the instantaneous Mean Time 

Between Failure (MTBF). The logarithm of cumulative failures 

N(t) plotted against logarithm cumulative time is a linear plot, as 

given in Equation (9). 

 log ( ) log logN t t     (9) 

In this model, λ is the scale parameter or the intercept on the 

y-axis in the linear plot as will be shown in a later section of this 

paper, and β is the growth parameter which is the slope of the 

line. Like the Weibull distribution, when β is less than 1, the 

failure rate is decreasing. The failure rate is increasing when β is 

greater than 1, and constant when β equals to 1. Figure 2 gives 

an illustration of the failure rate in relation to the value of β. 
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Figure 2  Illustration of the Failure rate 

III. FAILURE PREDICTION USING THE WEIBULL AND THE 
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Table 1 HV Cable joint failures with a Utility company between 2004 and 

2011 

No. Failure causes 
Date of 

Commission 

Date of 

Failure 
t/days 

1 Quality issue 2010.06.08 2010.06.13 5 

2 Installation issue 2007.10.23 2007.12.05 43 

3 Installation issue 2007.10.23 2007.12.27 65 

4 Quality issue 2009.07.01 2010.01.11 194 

5 Quality issue 2008.08.02 2009.04.18 259 

6 Quality issue 2007.08.21 2008.05.09 262 

7 Quality issue 2008.07.12 2009.07.01 354 

8 Quality issue 2003.06.01 2005.02.10 620 

9 Quality issue 2008.02.04 2010.09.29 968 

10 Quality issue 1998.06.01 2004.03.01 2100 

11 Quality issue 2002.07.17 2009.09.27 2629 

12 Unknown 1999.09.01 2006.12.29 2676 

13 Unknown 1999.09.01 2006.12.29 2676 

14 Quality issue 2003.05.30 2010.12.03 2744 

15 Unknown 1996.06.01 2008.01.20 4250 

16 Quality issue 1996.06.01 2008.01.20 4250 

 

A set of HV cable (rated at 110kV and 220kV) failure data 

has been collected from a regional power supply company in 

China. The cable asset involved in the data has a total circuit 

length of 380km and there were a total of 1142 cable joints. 

During the period between January 2004 and December 2011, 

31 failures were registered. However two of them were 

registered with an age of 0, and are included as left censored 

data (Appendix Table A). There were 16 early-failures, all 

given in Table 1, which will be the focus of this paper. The 

remaining 13 failures caused by third party damages and aging 

are not included.  

A. Weibull Distribution 

When the Weibull model is applied to forecast failures, the 

procedures are as follows. 

(1) Calculate the age to failure of all failed items and 

censored time t (between the date of commissioning and the date 

of data collection for suspended items), then rank t, for both 

failed and suspended items, from the smallest to the largest, as 

shown in Appendix Table A. Here it is very important to include 

censors because they will provide useful information for the 

Weibull analysis, which will be illustrated later in this section. 

The rank of the failed items should be modified by the presence 

of the censors. The adjusted rank can be calculated by Equation 

(10) [20]. 
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RR  denotes the reverse rank which rank from the largest to 

smallest. iAR  denotes the ith adjusted rank. n is the total 

number of sample. 0 0AR  . 
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When the two parameter Weibull model is used for failure 

prediction, the cumulative distribution function given in 

Equation (1) is used. If the natural logarithm is taken at both 

sides of the function, then Equation (11) can be obtained: 
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where ( )F t  can be calculated by the median rank equation in 

Equation (12) below:  
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let: 

 
1

ln[ln ]
1 ( )

y
F t




, lnx t , b  , lna     (13) 

then:  

 y a b x    (14) 

Based on Equations (13) and (14), the software package 

Origin has been adopted to carry out linear fitting. The fitting 

results are shown in Figure 3. The Adj.R-Square which 

measures the quality of the data fitting process is equal to 0.961. 

The closer Adj.R-Square is to 1, the more accurate the fitting 

result is. For a particular value px , the 95% lower limit and 

upper limit are obtained using Equations (15) and (16) 

respectively. 
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Where ˆ
py a x b   , and the value of  */ 2 1t n ， can 

be obtained from the distribution Table.  equals to 5%. *n  

equals to n-1. n is number of dataset(in this paper n equals to 16). 

ES  represents the standard error which can be obtained by 
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in Equations (13) and (14). 

Based on the results in Figure 3, the Weibull parameter are 

obtained as β=0.561 and η=3658889 respectively, according to 

Equation (13). The shape parameter β indicates that the failure 

rate decreases with age. The scale parameter η is equal to 

3658889 meaning that 63.2% faults happened before 3658889 

days, or over 10,000 calendar years, meaning that the 

population can last almost forever if these cable joints can fail 

only due to manufacturing and installation issues. In fact, when 

only the 16 failed joints are included in the data (it can also be 

called complete data), η equals to 1384 which is a pessimistic 

estimation of the characteristic life of the whole population 

when censored data are included. The actual life of a cable 

population will eventually be determined by age related failures. 

 (3) The time tc is used to calculate future failures. When the 

failed joints are replaced or new joints are installed, tc is the time 

between the date when cable joints are replaced or installed and 

the date of data being collected. If a joint is a suspension it 

means that the joint has not failed, then tc is equal to t.  

(4) Determine the time boundary tb. For example, in the case 

of the greatest age to failure of the 16 early cable joint failures, 

as shown in Table 1, being 4250, 4250 is assumed as the time 

boundary for early failure. It is assumed that beyond this instant 

in time, the probability of early failure between tc and tb is zero.  

(5) Calculate F(tcq) and F(tcq+k) for each joint item. Here tcq 

stands for the tc of mth item, k is the duration of a period over 

which failure is to be predicted. It should be noted that F(tcq) 

equals to F(4250) when the time tc exceeds the time boundary tb 

based on the assumption in step (4). 

(6) Calculate the expected failures. The expected failures 

during a period between tcq and tcq+k can be calculated using 

Equation (17): 

 Expected failures = 
 cq cq

q

q 1 cq

( )

1 ( )

SN F t k F t
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F t

  
 
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 
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Where F(tcq) denotes the accumulated probability of failure 

for the qth item between the time 0 and tcq. F(tcq+k) denotes the 

accumulated probability of failure for the qth item between the 

time 0 and tcq+k. JNq denotes the number of joints when the 

serial number is q. 

Assume there are 100 joints whose tc are 5. How many 

failures will we have among the 100 joints in the next year? 

When only the failures are considered in the Weibull analysis 

(in this situation η equals to 1384, β equals to 0.587), the 

expected failures will be 36.9 by using Equation (17). While if 

the suspensions and failures are included, the expected failures 

will be 0.52. Based on the field experience, it is believed that the 

results are more reliable when suspensions are included in the 

Weibull analysis.  
 

 

Table 2 Failure predictions using the Weibull distribution 

Serial 

number 

SN 

Age to failure or 

censored time t (day) 

Number 

of joints 

JN 

tcq F(tcq) F(tcq+365) F(tcq+365*2) F(tcq+365*3) F(tcq+365*4) 

1 0 1 1430 0.012174 0.013819 0.015319 0.01671 0.018013 

2 0 1 1624 0.013069 0.014632 0.016071 0.017412 0.018675 

3 5 1 536 0.007039 0.009408 0.011375 0.0131 0.01466 

4 43 1 1457 0.012302 0.013934 0.015426 0.016809 0.018106 

5 65 1 1435 0.012198 0.01384 0.015339 0.016728 0.01803 

6 97 2 97 0.002704 0.006478 0.008969 0.010999 0.012766 

7 125 2 125 0.003116 0.006694 0.009137 0.011142 0.012893 

8 131 1 131 0.003199 0.00674 0.009173 0.011173 0.01292 

9 144 2 144 0.003373 0.006838 0.00925 0.011239 0.012979 
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298 6119 2 6119 0.022315 0.022315 0.022315 0.022315 0.022315 

299 8369 7 8369 0.022315 0.022315 0.022315 0.022315 0.022315 

300 8369 5 8369 0.022315 0.022315 0.022315 0.022315 0.022315 

301 8369 10 8369 0.022315 0.022315 0.022315 0.022315 0.022315 

302 8369 12 8369 0.022315 0.022315 0.022315 0.022315 0.022315 

 

Table 3 Basic failure data required for applying the C-A algorithm 

Year 
Cumulative 

time (t) 

Number of failures 

in each year (N1) 

Cumulative 

number of 

failures (N2) 

Cumulative 

number of 

cable 

joints(TN1) 

Cumulative 

number of 

cable joints 

whose tc are 

less than 

4250(TN2) 

1
*100

2

N

TN
 

1
*100

2

N
N

TN

 
  

 
  

2004 1 1 1 414 380 0.263 0.263 

2005 2 1 2 440 406 0.246 0.509 

2006 3 2 4 477 423 0.473 0.982 

2007 4 2 6 586 514 0.389 1.371 

2008 5 3 9 793 683 0.439 1.811 

2009 6 3 12 909 782 0.384 2.194 

2010 7 4 16 1029 887 0.451 2.645 

2011 8 0 16 1142 953 0 2.645 

 

B. Crow-AMSAA model 

There are two ways of applying the C-A model. One (Model I) 

is to analyze failure numbers against time in calendar year as 

shown in Figure 4, whilst Figure 5 gives the results of C-A 

model (Model II) analyzing failures against the size of cable 

joint population. 

In this paper, we mainly focus on the early failures. As it has 

been mentioned before, 4250 days can be assumed as the time 

boundary for early failure. So it is considered that the cable joint 

whose age has exceeded 4250 will not suffer from early failures 

anymore and is not included in censors.  
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Figure 4 Application of C-A model I  

 

Due to the rapid increase in number of joints since 2007, the 

data have been divided into two segments. In the first segment 

there are 3 data points and the second has 5 data, as shown in 

Figures 4 and 5, where all the 8 data points are also modelled 

together.  

As shown in Figure 4, C-A model I analyzes cumulative time 

t (log(t) is taken as the x axis) and cumulative number of failures 

per 100 joints N (log(N) is taken as the y axis).  

It can be seen from the results of C-A model I that only the β 

value of segment 2 is less than one, which indicates that the 

failure rate (or the number of failures per 100 joints under unit 

time) is decreasing. It can be concluded that segment 2 can best 

reflect the current state of the cable. Thus the linear fit result of 

segment 2 will be used for failure prediction.  

When the size of a cable population is still increasing sharply 

and the age profile of the population changes year-on-year, 

subsections should be considered in C-A model. 

2.6 2.8 3.0

0.0

0.4

0.8

1.2

1.6
segment 2( last 5 data points)

lo
g

(N
2

)

log(TN2)

 Data

 Linear fit of segment 1

 Linear fit of segment 2

 Linear fit of all the 8 data points
=1.6933

Adj.R-Square=0.97808

=0.000151

=4.578E-7=2.56252

Adj.R-Square=0.86265
(all the 8 data points)

=1.671E-33=12.69852

Adj.R-Square=0.96393
segment 1(first 3 data points)

Figure 5 Application of C-A model II 

 

As shown in Figure 5, C-A model II analyzes the cumulative 

number of joints TN2 (log(TN2) is taken as the x axis) and the 

cumulative number of failures N2 (log(N2) is taken as y axis). 

It can be found in Figure 5, the β value of segment 1, 2 and 

―all the 8 data points‖ are greater than 1, which indicates that the 

failure rate is increasing. The failure rate here is the number of 

failures under unit number of installed joints according to the 

physic meaning of C-A model, which is quite different from 

C-A model I. In this situation, the expected number of failures 

has little to do with time and is influenced only by the 

cumulative joints.  



When making prediction of the number of early failures, 

Equation (18) should be used in C-A model I. Although 

discontinued joints will be replaced by new ones, but the 

number of the total joints will not be affected by the replaced 

joints. The total number of joints in this case should be 

2( ) ( )TN t t TI t t    when considering replaced and newly 

installed joints . 

Expected failures= 

   ( ) ( ) * 2( ) ( )N t t N t TN t t TI t t    

   ( ) * 2( ) ( )t t t TN t t TI t t          (18) 

Where TI  is the number of newly installed cable joints 

during the period of t . It should be noted that during the 

period of t , some joints’ tc will exceed 4250. Thus the 

number of 2TN  will decrease as time goes by. 

While Equation (19) should be used for failure prediction in 

C-A model II. 

Expected failures= 

( ) ( )N t t N t 

( 2( ) ( )) ( 2( ) ( ))TN t t TI t t TN t TI t         (19) 

IV. RESULTS ANALYSIS  

As it can be seen in Figure 6, Weibull, C-A model I and II are 

used for failure prediction. The same dataset has been used in 

the Weibull and the C-A approaches, but the results have some 

differences.  
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Figure 6 Failure predictions using the C-A model and the Weibull 

distribution 

 

When the installation is not considered, there is a decrease 

trend of the expected failures of Weibull and C-A model I. The 

expected failures of Weibull and C-A model I increase due to 

the installation is considered and the decrease trend turns into 

the increase trend. It can be easily concluded that the expected 

number of failures is relevant both with the past information 

(failure data which decide the parameters of Weibull and C-A 

model) and the future information (the number of installed 

joints per year). 

It should be noted when installation is considered, the 

expected failures of C-A model II has a decrease trend even if 

the β value of C-A model II is greater than 1. This phenomenon 

can be explained by the following. As time goes by, the value of 

2TN  decreases due to some of the joints whose tc have exceed 

4250. Despite there are 100 joints installed per year, the 

increment value of 2( ) ( )TN t TI t decrease. So the number of 

predicted failures decreases. It can also be found from Figure 6 

that the expected failures of C-A model II are closer to the ones 

of the Weibull distribution when installation is considered. It 

can be concluded that C-A model II is more suitable to use when 

there is a sharp increase in the number of joints. 

Clearly when the number of joints does not increase or it 

actually decrease, the value of 2( ) ( )TN t t TI t t    is equal 

or less than 2( ) ( )TN t TI t , the predicted failures of would be 

zero or minus respectively. In this situation, C-A II model is not 

suitable for failure predictions. 

V. DISCUSSIONS 

Weibull uses the life data, or the details of the dates of 

commissioning and failure. Weibull applies a failure rate to 

each individual asset reflecting its real age. Weibull is not 

straightforward as C-A model when used for failure prediction. 

It needs to summate the failure probability of each joint. But 

Weibull can directly and correctly reflect the failure mode.  

While C-A model only considers the accumulated failures per 

year, it does not model the failure rate of the individual asset 

which changes over time. Although the C-A approach works for 

data sets that are missing information, which has often been the 

case with power utilities [21], it does not consider how long a 

cable has been in service.  

Two types of C-A model have been compared in this paper. 

According to the physic meaning of the C-A model, the failure 

rate of C-A model I is defined as the number of failures per 100 

joints under unit time, while the failure rate of C-A model II is 

defined as the number of failures under unit number of installed 

joints. Due to the difference, when C-A model is applied to a 

situation where there is a sharp change in the number of asset 

population, C-A model II should be recommended. When the 

population is relative stable and the failures has much to do with 

time, C-A model I should be chosen. 

It is important for asset managers to be aware of the failure 

mode and the expected number of failures which are useful to 

make specific maintenance strategies. It should be very careful 

to deal with early-failure data when using C-A model. 

Otherwise, some opposite result will be obtained. The Weibull 

distribution could be used as a double check of failure mode. 

VI. SUMMARY 

This paper presented a comparison of the Weibull 

distribution and the C-A model for prediction of early cable 

joint failures. The procedures of applying the two models for 

failure prediction with considerations of installation have been 

demonstrated. While a case study was carried out, using early 

cable joint failure data, the expected failures have been 



compared and analyzed. Further analysis was then conducted to 

compare the fundamental differences between the two models. 

Analysis showed that the Weibull distribution, which is based 

on life data, provides more reliable results about failure mode 

when the overall population increases rapidly. In the case study, 

when there is a sharp increase in the number of installed joints 

during a short period, subsections should be carried out in order 

to better reflect the current state of cable joints. Despite the 

limitation that using the cumulative time with cumulative failure 

does not reveal the change in reliability of the cable joints with 

their service time, C-A model works with incomplete data and 

the predictions are more straightforward. 
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Appendix             

Table A  The data used in paper 

SN t F/S JN SN t F/S JN SN t F/S JN SN t F/S JN SN t F/S JN 

1 0 S 1 62 563 S 5 123 1005 S 3 184 1533 S 2 245 3424 S 2 
2 0 S 1 63 563 S 2 124 1005 S 3 185 1587 S 4 246 3424 S 4 
3 5 F 1 64 579 S 5 125 1053 S 1 186 1587 S 2 247 3428 S 3 
4 43 F 1 65 579 S 5 126 1056 S 1 187 1605 S 2 248 3436 S 5 
5 65 F 1 66 582 S 2 127 1064 S 2 188 1605 S 4 249 3440 S 2 
6 97 S 2 67 585 S 2 128 1068 S 2 189 1614 S 4 250 3440 S 2 
7 125 S 2 68 585 S 2 129 1092 S 3 190 1614 S 4 251 3451 S 7 
8 131 S 1 69 587 S 4 130 1125 S 2 191 1624 S 16 252 3487 S 2 
9 144 S 2 70 587 S 2 131 1148 S 4 192 1646 S 2 253 3623 S 4 

10 144 S 2 71 587 S 7 132 1157 S 3 193 1675 S 2 254 3623 S 4 
11 154 S 9 72 587 S 2 133 1186 S 2 194 1675 S 2 255 3638 S 19 
12 154 S 9 73 604 S 4 134 1186 S 2 195 1682 S 2 256 3777 S 16 
13 157 S 7 74 620 F 1 135 1186 S 2 196 1683 S 2 257 3935 S 3 
14 157 S 6 75 627 S 2 136 1186 S 2 197 1736 S 3 258 3935 S 3 
15 168 S 7 76 627 S 2 137 1188 S 6 198 1800 S 1 259 4020 S 2 
16 170 S 2 77 629 S 2 138 1216 S 2 199 1889 S 12 260 4020 S 2 
17 170 S 1 78 629 S 2 139 1217 S 7 200 1939 S 2 261 4084 S 2 

18 182 S 4 79 629 S 2 140 1219 S 5 201 1970 S 9 262 4084 S 2 
19 182 S 4 80 629 S 2 141 1219 S 5 202 1982 S 9 263 4250 F 1 
20 194 F 1 81 629 S 2 142 1231 S 10 203 2049 S 4 264 4250 F 1 
21 238 S 2 82 629 S 2 143 1231 S 10 204 2100 F 1 265 4383 S 2 
22 238 S 2 83 668 S 1 144 1231 S 2 205 2167 S 3 266 4444 S 10 
23 248 S 3 84 668 S 1 145 1231 S 2 206 2175 S 7 267 4474 S 15 
24 252 S 3 85 674 S 2 146 1231 S 2 207 2175 S 7 268 4474 S 1 
25 252 S 3 86 674 S 2 147 1231 S 2 208 2281 S 2 269 4474 S 4 
26 259 F 1 87 674 S 2 148 1231 S 2 209 2282 S 2 270 4474 S 8 
27 261 S 2 88 701 S 3 149 1232 S 3 210 2313 S 2 271 4532 S 7 
28 261 S 2 89 714 S 2 150 1232 S 3 211 2397 S 5 272 4777 S 7 
29 262 S 3 90 714 S 2 151 1232 S 2 212 2549 S 19 273 4901 S 2 
30 262 S 3 91 720 S 1 152 1232 S 2 213 2552 S 9 274 4931 S 1 
31 262 S 3 92 722 S 4 153 1237 S 12 214 2629 F 1 275 4931 S 5 
32 262 F 1 93 722 S 4 154 1246 S 5 215 2676 F 1 276 5174 S 5 
33 310 S 15 94 730 S 9 155 1246 S 4 216 2676 F 1 277 5232 S 2 
34 317 S 4 95 748 S 2 156 1246 S 4 217 2744 F 1 278 5266 S 2 
35 317 S 6 96 748 S 2 157 1248 S 12 218 2815 S 2 279 5296 S 4 
36 328 S 10 97 777 S 2 158 1259 S 2 219 2815 S 2 280 5296 S 4 
37 328 S 4 98 777 S 9 159 1278 S 2 220 2817 S 2 281 5357 S 2 
38 328 S 1 99 797 S 7 160 1278 S 2 221 2817 S 2 282 5508 S 3 
39 354 F 1 100 819 S 2 161 1312 S 8 222 2907 S 2 283 5508 S 3 
40 442 S 1 101 878 S 11 162 1315 S 11 223 2996 S 4 284 5661 S 4 
41 523 S 1 102 883 S 1 163 1328 S 13 224 2996 S 4 285 5661 S 8 
42 523 S 1 103 890 S 2 164 1329 S 4 225 2996 S 4 286 5661 S 6 
43 528 S 2 104 890 S 2 165 1347 S 5 226 3087 S 2 287 5661 S 8 
44 528 S 7 105 901 S 2 166 1351 S 2 227 3087 S 2 288 5661 S 4 
45 528 S 3 106 901 S 2 167 1351 S 1 228 3087 S 2 289 6012 S 4 
46 528 S 2 107 903 S 2 168 1351 S 1 229 3087 S 2 290 6012 S 2 
47 528 S 7 108 903 S 2 169 1396 S 1 230 3087 S 2 291 6012 S 3 
48 528 S 3 109 904 S 2 170 1430 S 1 231 3100 S 7 292 6012 S 2 
49 541 S 4 110 910 S 2 171 1455 S 7 232 3105 S 16 293 6020 S 3 
50 546 S 2 111 914 S 2 172 1464 S 2 233 3107 S 8 294 6027 S 2 
51 546 S 2 112 918 S 6 173 1464 S 2 234 3119 S 3 295 6027 S 2 
52 547 S 1 113 918 S 6 174 1464 S 2 235 3121 S 2 296 6086 S 16 

53 547 S 1 114 921 S 2 175 1464 S 2 236 3121 S 2 297 6119 S 2 
54 550 S 2 115 922 S 2 176 1491 S 3 237 3121 S 2 298 6119 S 2 
55 550 S 2 116 922 S 9 177 1500 S 8 238 3289 S 5 299 8369 S 7 
56 550 S 2 117 923 S 2 178 1500 S 6 239 3290 S 3 300 8369 S 5 
57 550 S 2 118 964 S 4 179 1507 S 2 240 3352 S 2 301 8369 S 10 
58 550 S 2 119 968 F 1 180 1507 S 2 241 3353 S 3 302 8369 S 12 
59 555 S 2 120 981 S 12 181 1508 S 5 242 3353 S 2     
60 555 S 2 121 990 S 2 182 1514 S 7 243 3424 S 5     
61 562 S 4 122 991 S 2 183 1522 S 7 244 3424 S 2     

SN denotes the serial number. t denotes age to failure or censored time. F/S denotes the status of cable. F means failure, while S means 

suspension. JN denotes the number of joints. 
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