1,820 research outputs found

    Correlations and Scaling Laws in Human Mobility

    Get PDF
    Human mobility patterns deeply affect the dynamics of many social systems. In this paper, we empirically analyze the real-world human movements based GPS records, and observe rich scaling properties in the temporal-spatial patterns as well as an abnormal transition in the speed-displacement patterns. We notice that the displacements at the population level show significant positive correlation, indicating a cascade-like nature in human movements. Furthermore, our analysis at the individual level finds that the displacement distributions of users with strong correlation of displacements are closer to power laws, implying a relationship between the positive correlation of the series of displacements and the form of an individual's displacement distribution. These findings from our empirical analysis show a factor directly relevant to the origin of the scaling properties in human mobility.Comment: 10 pages, 9 figure

    Evolutionary Computation Applications in Current Bioinformatics

    Get PDF

    Interchange reconnection associated with a confined filament eruption: Implications for the source of transient cold-dense plasma in solar winds

    Full text link
    The cold-dense plasma is occasionally detected in the solar wind with in situ data, but the source of the cold-dense plasma remains illusive. Interchange reconnections (IRs) between closed fields and nearby open fields are well known to contribute to the formation of solar winds. We present a confined filament eruption associated with a puff-like coronal mass ejection (CME) on 2014 December 24. The filament underwent successive activations and finally erupted, due to continuous magnetic flux cancellations and emergences. The confined erupting filament showed a clear untwist motion, and most of the filament material fell back. During the eruption, some tiny blobs escaped from the confined filament body, along newly-formed open field lines rooted around the south end of the filament, and some bright plasma flowed from the north end of the filament to remote sites at nearby open fields. The newly-formed open field lines shifted southward with multiple branches. The puff-like CME also showed multiple bright fronts and a clear southward shift. All the results indicate an intermittent IR existed between closed fields of the confined erupting filament and nearby open fields, which released a portion of filament material (blobs) to form the puff-like CME. We suggest that the IR provides a possible source of cold-dense plasma in the solar wind

    Design and control of a bidirectional wireless charging system using GaN devices

    Get PDF
    Most of the existing wireless power transfer system works in unidirectional with one-direction control signals. This paper presents a bidirectional wireless charging system with duplex communication method, which is not only able to achieve the two-way wireless power transmission, but also transfer control signals bi-directionally. The power circuit operation mode is actively controlled by using the wireless transceiver module which can duplex communication to deliver measured signals remotely. The operational principle is analytically studied in details and is verified by simulation. Finally, a prototype of the bidirectional charging system using GaN devices has been successfully designed and tested. In addition, the measured feedback signals are effectively transmitted to validate the control algorithm

    Controlling doping in graphene through a SiC substrate: A first-principles study

    Full text link
    Controlling the type and density of charge carriers by doping is the key step for developing graphene electronics. However, direct doping of graphene is rather a challenge. Based on first-principles calculations, a concept of overcoming doping difficulty in graphene via substrate is reported.We find that doping could be strongly enhanced in epitaxial graphene grown on silicon carbide substrate. Compared to free-standing graphene, the formation energies of the dopants can decrease by as much as 8 eV. The type and density of the charge carriers of epitaxial graphene layer can be effectively manipulated by suitable dopants and surface passivation. More importantly, contrasting to the direct doping of graphene, the charge carriers in epitaxial graphene layer are weakly scattered by dopants due to the spatial separation between dopants and the conducting channel. Finally, we show that a similar idea can also be used to control magnetic properties, for example, induce a half-metallic state in the epitaxial graphene without magnetic impurity doping

    Applying Deep Learning to Answer Selection: A Study and An Open Task

    Full text link
    We apply a general deep learning framework to address the non-factoid question answering task. Our approach does not rely on any linguistic tools and can be applied to different languages or domains. Various architectures are presented and compared. We create and release a QA corpus and setup a new QA task in the insurance domain. Experimental results demonstrate superior performance compared to the baseline methods and various technologies give further improvements. For this highly challenging task, the top-1 accuracy can reach up to 65.3% on a test set, which indicates a great potential for practical use.Comment: To appear in the proceedings of ASRU 201
    • …
    corecore