307,061 research outputs found
Unipolar and bipolar fatigue in antiferroelectric lead zirconate thin films and evidences for switching-induced charge injection inducing fatigue
For the first time, we show that unipolar fatigue does occur in
antiferroelectric capacitors, confirming the predictions of a previous work
[Appl. Phys. Lett., 94, 072901 (2009)]. We also show that unipolar fatigue in
antiferroelectrics is less severe than bipolar fatigue if the driving field is
of the same magnitude. This phenomenon has been attributed to the
switching-induced charge injection, the main cause for polarization fatigue in
ferroelectric and antiferroelectric materials. Other evidences for polarization
fatigue caused by the switching-induced charge injection from the nearby
electrode rather than the charge injection during stable/quasi-stable leakage
current stage are also discussed.Comment: 10 pages and 2 figure
A Memristor Model with Piecewise Window Function
In this paper, we present a memristor model with piecewise window function, which is continuously differentiable and consists of three nonlinear pieces. By introducing two parameters, the shape of this window function can be flexibly adjusted to model different types of memristors. Using this model, one can easily obtain an expression of memristance depending on charge, from which the numerical value of memristance can be readily calculated for any given charge, and eliminate the error occurring in the simulation of some existing window function models
Variation of the solar magnetic flux spectrum during solar cycle 23
By using the unique database of SOHO/MDI full disk magnetograms from 1996
September to 2011 January, covering the entire solar cycle 23, we analyze the
time-variability of the solar magnetic flux spectrum and study the properties
of extended minimum of cycle 23. We totally identify 11.5 million magnetic
structures. It has been revealed that magnetic features with different magnetic
fluxes exhibit different cycle behaviors. The magnetic features with flux
larger than Mx, which cover solar active regions and
strong network features, show exactly the same variation as sunspots; However,
the remaining magnetic features which cover the majority of network
elements show anti-phase variation with sunspots. We select a riterion that the
monthly sunspot number is less than 20 to represent the Sun's low activity
status. Then we find the extended minimum of cycle 23 is characterized by the
long duration of low activity status, but the magnitude of magnetic flux in
this period is not lower than previous cycle. Both the duration of low activity
status and the minimum activity level defined by minimum sunspot number show a
century period approximately. The extended minimum of cycle 23 shows
similarities with solar cycle 11, which preceded the mini-maxima in later solar
cycles. This similarity is suggestive that the solar cycles following cycle 23
are likely to have low activity.Comment: 24 pages, 7 figures, accepted by JGR in 201
Nonlinear filtering for state delayed systems with Markovian switching
Copyright [2003] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper deals with the filtering problem for a general class of nonlinear time-delay systems with Markovian jumping parameters. The nonlinear time-delay stochastic systems may switch from one to the others according to the behavior of a Markov chain. The purpose of the problem addressed is to design a nonlinear full-order filter such that the dynamics of the estimation error is guaranteed to be stochastically exponentially stable in the mean square. Both filter analysis and synthesis problems are investigated. Sufficient conditions are established for the existence of the desired exponential filters, which are expressed in terms of the solutions to a set of linear matrix inequalities (LMIs). The explicit expression of the desired filters is also provided. A simulation example is given to illustrate the design procedures and performances of the proposed method
Modeling the AgInSbTe Memristor
The AgInSbTe memristor shows gradual resistance tuning characteristics, which makes it a potential candidate to emulate biological plastic synapses. The working mechanism of the device is complex, and both intrinsic charge-trapping mechanism and extrinsic electrochemical metallization effect are confirmed in the AgInSbTe memristor. Mathematical model of the AgInSbTe memristor has not been given before. We propose the flux-voltage controlled memristor model. With piecewise linear approximation technique, we deliver the flux-voltage controlled memristor model of the AgInSbTe memristor based on the experiment data. Our model fits the data well. The flux-voltage controlled memristor model and the piecewise linear approximation method are also suitable for modeling other kinds of memristor devices based on experiment data
Improvement of critical current in MgB2/Fe wires by a ferromagnetic sheath
Transport critical current (Ic) was measured for Fe-sheathed MgB2 round
wires. A critical current density of 5.3 x 10^4 A/cm^2 was obtained at 32K.
Strong magnetic shielding by the iron sheath was observed, resulting in a
decrease in Ic by only 15% in a field of 0.6T at 32K. In addition to shielding,
interaction between the iron sheath and the superconductor resulted in a
constant Ic between 0.2 and 0.6T. This was well beyond the maximum field for
effective shielding of 0.2T. This effect can be used to substantially improve
the field performance of MgB2/Fe wires at fields at least 3 times higher than
the range allowed by mere magnetic shielding by the iron sheath. The dependence
of Ic on the angle between field and current showed that the transport current
does not flow straight across the wire, but meanders between the grains
Neutrino oscillations in de Sitter space-time
We try to understand flavor oscillations and to develop the formulae for
describing neutrino oscillations in de Sitter space-time. First, the covariant
Dirac equation is investigated under the conformally flat coordinates of de
Sitter geometry. Then, we obtain the exact solutions of the Dirac equation and
indicate the explicit form of the phase of wave function. Next, the concise
formulae for calculating the neutrino oscillation probabilities in de Sitter
space-time are given. Finally, The difference between our formulae and the
standard result in Minkowski space-time is pointed out.Comment: 13 pages, no figure
Geometric phases induced in auxiliary qubits by many-body systems near its critical points
The geometric phase induced in an auxiliary qubit by a many-body system is
calculated and discussed. Two kinds of coupling between the auxiliary qubit and
the many-body system are considered, which lead to dephasing and dissipation in
the qubit, respectively. As an example, we consider the XY spin-chain
dephasingly couple to a qubit, the geometric phase induced in the qubit is
presented and discussed. The results show that the geometric phase might be
used to signal the critical points of the many-body system, and it tends to
zero with the parameters of the many-body system going away from the critical
points
- …
