23 research outputs found

    Adaptive Routing Forwarding Strategy Based on Neural Network Algorithm

    Full text link
    With the profound changes in global digital media, the focus of Internet users has gradually shifted to how to quickly obtain information without paying attention to where the information is stored. However, the current TCP/IP network protocol architecture cannot adapt to the rapid development of today#39s content applications. In order to adapt to the changes in the Internet, information-centric networking (ICN)has received extensive attention. Besides, the optimization of the user service request scheduling problem is the core issue affecting the performance of the ICN , and it is one of the hot research topics in the ICN network. To solve this problem, this paper proposes an adaptive routing forwarding strategy based on neural network algorithm. Through the modeling of the classic architecture named data networking (NDN) network delay model of ICN network, a neural network algorithm is used to delay prediction, and a forwarding strategy mechanism based on predict delay is designed to innovate in the NDN. The interface information Stat is added to the forwarding information base (FIB) of the network component to implement the dynamic selection of the forwarding routing. In addition, routing dynamic self-adaptation adjustment mechanism and fault rerouting function are designed in consideration of the situation of route congestion and interruption. Simulation results show that this strategy effectively reduces network delay and improves network performance

    Roadmap on Perovskite Light-Emitting Diodes

    Full text link
    In recent years, the field of metal-halide perovskite emitters has rapidly emerged as a new community in solid-state lighting. Their exceptional optoelectronic properties have contributed to the rapid rise in external quantum efficiencies (EQEs) in perovskite light-emitting diodes (PeLEDs) from <1% (in 2014) to approaching 30% (in 2023) across a wide range of wavelengths. However, several challenges still hinder their commercialization, including the relatively low EQEs of blue/white devices, limited EQEs in large-area devices, poor device stability, as well as the toxicity of the easily accessible lead components and the solvents used in the synthesis and processing of PeLEDs. This roadmap addresses the current and future challenges in PeLEDs across fundamental and applied research areas, by sharing the community's perspectives. This work will provide the field with practical guidelines to advance PeLED development and facilitate more rapid commercialization.Comment: 103 pages, 29 figures. This is the version of the article before peer review or editing, as submitted by an author to Journal of Physics: Photonics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Protocols Design and Area Division for Privacy-preserving Delay-aware Authentication in Vehicular Networks

    No full text
    The problem of security and privacy in vehicular networks is a vital issue, and it attracts increasing attention to address the security vulnerability of vehicular networks. Authentication solutions are introduced for vehicular networks to ensure that network access is only given to authorized users. Among authentication solutions for vehicular networks, group signature not only offers authentication services, but also provides conditional privacy preservation. However, the current group signature approach for authentication in vehicular networks exhibits time-consuming signature verification and poor scalability. To overcome these shortcomings, we propose a flexible and efficient delay-aware authentication scheme (FEDAS) by utilizing edge computing paradigm. In the proposed architecture, we design the authentication group maintaining mechanism and develop the collaborative CRL management method. Moreover, we propose transition zone to solve the reliable authentication problem in border area of the group. To implement the proposed architecture, we propose a model for calculating the length of local CRL, which establishes the relationship between the size of a sub-area and the length of local CRL. And we also design a method for area division based on the length of local CRL, which provides division principle for our authentication scheme. We conduct extensive simulations to verify the effectiveness of our proposed scheme

    Towards a predictive kinetic model of 3-ethyltoluene: Evidence concerning fuel-specific intermediates in the flow reactor pyrolysis with insights into model implications

    No full text
    To reveal insights into high temperature kinetics of dialkylaromatics, a pyrolysis investigation of 3ethyltoluene in a flow reactor together with its reaction kinetics are presented in this work. Concentrations and chemical structures of specific species covering temperature range from 796 to 1383K at the pressure of 30 and 760 Torr were recorded and quantified by using synchrotron vacuum ultraviolet photoionization molecular-beam mass spectrometry (VUV-PI-MBMS). Important C 8 and C 9 fuel-specific intermediates relevant to primary decomposition of 3-ethyltoluene and isomerization of methylbenzyl and ethylbenzyl radicals were detected and identified. The kinetic model interpreting high temperature pyrolysis chemistry of 3-ethyltoluene was developed and reasonably predicted the measurements in this work. The model analyses reveal that the methyl-dissociated reaction from the ethyl group of 3-ethyltoluene is dominant in the fuel decomposition at low pressure, while the fuel is mainly consumed by hydrogen abstraction reactions at atmospheric pressure. The experimental observations of three methylbenzyl isomers, o -xylylene, p -xylylene, styrene and benzocyclobutene provide evidence for the relationships between products involving isomerization of methylbenzyl radicals, formation of xylylenes and decomposition of o -xylylene. The fuel structure effects of 3-ethyltoluene and m -xylene are revealed by comparing the pyrolysis behaviors in both cases. It has been found that the m -methylbenzyl-generating channel in the 3-ethyltoluene pyrolysis improved the reaction reactivity initially. Furthermore, the fuel with longer substituent ethyl group facilitates the formation of cycloalkenes and aromatics.& COPY; 2022 The Combustion Institute. Published by Elsevier Inc. All rights reserved

    A Comparative Study of Oncolytic Vaccinia Viruses Harboring Different Marine Lectins in Breast Cancer Cells

    No full text
    Our previous studies demonstrated that arming vaccinia viruses with marine lectins enhanced the antitumor efficacy in several cancer cells. This study aims to compare the efficacy of oncolytic vaccinia viruses harboring Tachypleus tridentatus lectin (oncoVV-TTL), Aphrocallistes vastus lectin (oncoVV-AVL), white-spotted charr lectin (oncoVV-WCL), and Asterina pectinifera lectin (oncoVV-APL) in breast cancer cells (BC). These results indicated that oncoVV-AVL elicited the highest anti-tumor effect, followed by oncoVV-APL, while oncoVV-TTL and oncoVV-WCL had lower effects in BC. Further studies showed that apoptosis and replication may work together to enhance the cytotoxicity of oncoVV-lectins in a cell-type dependent manner. TTL/AVL/APL/WCL may mediate multiple pathways, including ERK, JNK, Hippo, and PI3K pathways, to promote oncoVV replication in MDA-MB-231 cells. In contrast, these pathways did not affect oncoVV-TTL/AVL/APL/WCL replication in MCF-7 cells, suggesting that the mechanisms of recombinant viruses in MCF-7 (ER+, PR+) and MDA-MB-231 (TNBC) cells were significantly different. Based on this study, we hypothesized that ER or PR may be responsible for the differences in promoting viral replication and inducing apoptosis between MCF-7 and MDA-MB-231 cells, but the specific mechanism needs to be further explored. In addition, small-molecule drugs targeting key cellular signaling pathways, including MAPK, PI3K/Akt, and Hippo, could be conjunction with oncoVV-AVL to promote breast cancer therapy, and key pathway factors in the JNK and PI3K pathways may be related to the efficacy of oncoVV-APL/TTL/WCL. This study provides a basis for applying oncolytic vaccinia virus in breast carcinoma

    SSANet: An Adaptive Spectral–Spatial Attention Autoencoder Network for Hyperspectral Unmixing

    No full text
    Convolutional neural-network-based autoencoders, which can integrate the spatial correlation between pixels well, have been broadly used for hyperspectral unmixing and obtained excellent performance. Nevertheless, these methods are hindered in their performance by the fact that they treat all spectral bands and spatial information equally in the unmixing procedure. In this article, we propose an adaptive spectral–spatial attention autoencoder network, called SSANet, to solve the mixing pixel problem of the hyperspectral image. First, we design an adaptive spectral–spatial attention module, which refines spectral–spatial features by sequentially superimposing the spectral attention module and spatial attention module. The spectral attention module is built to select useful spectral bands, and the spatial attention module is designed to filter spatial information. Second, SSANet exploits the geometric properties of endmembers in the hyperspectral image while considering abundance sparsity. We significantly improve the endmember and abundance results by introducing minimum volume and sparsity regularization terms into the loss function. We evaluate the proposed SSANet on one synthetic dataset and four real hyperspectral scenes, i.e., Samson, Jasper Ridge, Houston, and Urban. The results indicate that the proposed SSANet achieved competitive unmixing results compared with several conventional and advanced unmixing approaches with respect to the root mean square error and spectral angle distance

    Gut Microbial Dysbiosis Is Associated with Altered Hepatic Functions and Serum Metabolites in Chronic Hepatitis B Patients

    No full text
    Chronic hepatitis B (CHB) is a global epidemic disease that results from hepatitis B virus (HBV) infection and may progress to severe liver failure, including liver fibrosis, cirrhosis and hepatocellular carcinoma. Previous evidence has indicated that the dysbiosis of gut microbiota occurs after liver virus infection and is associated with severe liver disease. The aim of this study is to elucidate the compositional and functional characteristics of the gut microbiota in early-stage CHB and to understand their influence on disease progression. We investigated the gut microbial composition of stool samples from 85 CHB patients with low Child-Pugh scores and 22 healthy controls using the Illumina MiSeq sequencing platform. Furthermore, the serum metabolome of 40 subjects was measured by gas chromatography mass spectrometry. Compared with the controls, significant alteration in the gut microbiota was observed in the CHB patients; 5 operational taxonomic units (OTUs) belonging to Actinomyces, Clostridium sensu stricto, unclassified Lachnospiraceae and Megamonas were increased, and 27 belonging to Alistipes, Asaccharobacter, Bacteroides, Butyricimonas, Clostridium IV, Escherichia/Shigella, Parabacteroides, Ruminococcus, unclassified Bacteria, unclassified Clostridiales, Unclassified Coriobacteriaceae, unclassified Enterobacteriaceae, unclassified Lachnospiraceae and unclassified Ruminococcaceae were decreased. The inferred metagenomic information of gut microbiota in CHB showed 21 enriched and 17 depleted KEGG level-2 pathways. Four OTUs, OTU38 (Streptococcus), OTU124 (Veillonella), OTU224 (Streptococcus), and OTU55 (Haemophilus), had high correlations with hosts' hepatic function indices and 10 serum metabolites, including phenylalanine and tyrosine, which are aromatic amino acids that play pathogenic roles in liver disease. In particular, these 4 OTUs were significantly higher in patients with higher Child-Pugh scores, who also showed diminished phenylalanine and tryptophan metabolisms in the inferred gut metagenomic functions. These compositional and functional changes in the gut microbiota in early-stage CHB patients suggest the potential contributions of gut microbiota to the progression of CHB, and thus provide new insight into gut microbiota-targeted interventions to improve the prognosis of this disease
    corecore