75 research outputs found

    Antibody-related movement disorders - a comprehensive review of phenotype-autoantibody correlations and a guide to testing

    Get PDF
    Background: Over the past decade increasing scientific progress in the field of autoantibody–mediated neurological diseases was achieved. Movement disorders are a frequent and often prominent feature in such diseases which are potentially treatable. Main body: Antibody-mediated movement disorders encompass a large clinical spectrum of diverse neurologic disorders occurring either in isolation or accompanying more complex autoimmune encephalopathic diseases. Since autoimmune movement disorders can easily be misdiagnosed as neurodegenerative or metabolic conditions, appropriate immunotherapy can be delayed or even missed. Recognition of typical clinical patterns is important to reach the correct diagnosis. Conclusion: There is a growing number of newly discovered antibodies which can cause movement disorders. Several antibodies can cause distinctive phenotypes of movement disorders which are important to be aware of. Early diagnosis is important because immunotherapy can result in major improvement. In this review article we summarize the current knowledge of autoimmune movement disorders from a point of view focused on clinical syndromes. We discuss associated clinical phenomenology and antineuronal antibodies together with alternative etiologies with the aim of providing a diagnostic framework for clinicians considering underlying autoimmunity in patients with movement disorders

    Preliminary study: Treatment with intramuscular interferon beta-1a results in increased levels of IL-12Rβ2+ and decreased levels of IL23R+ CD4+ T - Lymphocytes in multiple sclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are a lack of biomarkers which can be used to predict clinical outcomes for multiple sclerosis (MS) patients receiving interferon beta (IFN-β). Thus the objective of this study was to characterize changes in CD4+ T-lymphocyte expression in an unbiased manner following initiation of intramuscular (IM) IFN-β-1a treatment, and then to verify those findings using marker-specific assays.</p> <p>Methods</p> <p>Peripheral blood specimens were collected from twenty MS patients before and after treatment with intramuscular (IM) IFN-β-1a and were used for isolation of mononuclear cells (PBMCs). mRNA expression patterns of negatively-selected CD4+ T-cells from the PBMCs were analyzed using microarray gene expression technology. IL-12 and IL-23 receptor levels on PBMC-derived CD4+ T-cells were analyzed by flow cytometry. The phosphorylation status of Stat4 was measured by performing densitometry on western blots.</p> <p>Results</p> <p>Microarray analyses demonstrated that mRNA expression of the IL-12Rβ2 gene was uniformly up-regulated in response to IFN-β-1a treatment and was associated with an increased number of IL-12Rβ2<sup>+ </sup>CD4<sup>+ </sup>T-cells by flow cytometry in 4 of 6 patients. This finding was substantiated by demonstrating that Stat4 phosphorylation, a transcription factor for IL-12, was increased after treatment. Conversely, the number of IL-23R<sup>+ </sup>CD4<sup>+ </sup>T-cells was decreased following treatment.</p> <p>Conclusions</p> <p>The IL-12 receptor shares a common subunit, the IL-12Rβ2, with the IL-23 receptor. Both of these receptors have a probable role in regulating IL-17 and TH-17 cells, important mediators of inflammation in multiple sclerosis (MS). Thus, the changes in the numbers of CD4<sup>+ </sup>T-cells expressing these receptors in response to IFN-β-1a treatment may point to an important mechanism of action for this drug, but further large scale studies are needed to confirm these preliminary observations.</p

    Excessive Biologic Response to IFNβ Is Associated with Poor Treatment Response in Patients with Multiple Sclerosis

    Get PDF
    Interferon-beta (IFNβ) is used to inhibit disease activity in multiple sclerosis (MS), but its mechanisms of action are incompletely understood, individual treatment response varies, and biological markers predicting response to treatment have yet to be identified.he relationship between the molecular response to IFNβ and treatment response was determined in 85 patients using a longitudinal design in which treatment effect was categorized by brain magnetic resonance imaging as good (n = 70) or poor response (n = 15). Molecular response was quantified using a customized cDNA macroarray assay for 166 IFN-regulated genes (IRGs).The molecular response to IFNβ differed significantly between patients in the pattern and number of regulated genes. The molecular response was strikingly stable for individuals for as long as 24 months, however, suggesting an individual ‘IFN response fingerprint’. Unexpectedly, patients with poor response showed an exaggerated molecular response. IRG induction ratios demonstrated an exaggerated molecular response at both the first and 6-month IFNβ injections.MS patients exhibit individually unique but temporally stable biological responses to IFNβ. Poor treatment response is not explained by the duration of biological effects or the specific genes induced. Rather, individuals with poor treatment response have a generally exaggerated biological response to type 1 IFN injections. We hypothesize that the molecular response to type I IFN identifies a pathogenetically distinct subset of MS patients whose disease is driven in part by innate immunity. The findings suggest a strategy for biologically based, rational use of IFNβ for individual MS patients

    Microarray analysis identifies a set of CXCR3 and CCR2 ligand chemokines as early IFNβ-responsive genes in peripheral blood lymphocytes in vitro: an implication for IFNβ-related adverse effects in multiple sclerosis

    Get PDF
    BACKGROUND: A substantial proportion of multiple sclerosis (MS) patients discontinue interferon-beta (IFNβ) treatment due to various adverse effects, most of which emerge at the early phase after initiation of the treatment and then diminish with time. At present, the molecular mechanism underlying IFNβ-related adverse effects remains largely unknown. The aim of this study is to identify a comprehensive list of early IFNβ-responsive genes (IRGs) in peripheral blood mononuclear cells (PBMC) that may play a key role in induction of adverse effects. METHODS: Total RNA of PBMC exposed to 50 ng/ml recombinant human IFNβ for 3 to 24 hours in vitro was processed for cDNA microarray analysis, followed by quantitative real-time RT-PCR analysis. RESULTS: Among 1,258 genes on the array, IFNβ elevated the expression of 107 and 87 genes, while it reduced the expression of 22 and 23 genes at 3 and 24 hours, respectively. Upregulated IRGs were categorized into conventional IFN-response markers, components of IFN-signaling pathways, chemokines, cytokines, growth factors, and their receptors, regulators of apoptosis, DNA damage, and cell cycle, heat shock proteins, and costimulatory and adhesion molecules. IFNβ markedly upregulated CXCR3 ligand chemokines (SCYB11, SCYB10 and SCYB9) chiefly active on effector T helper type 1 (Th1) T cells, and CCR2 ligand chemokines (SCYA8 and SCYA2) effective on monocytes, whereas it downregulated CXCR2 ligand chemokines (SCYB2, SCYB1 and IL8) primarily active on neutrophils. CONCLUSION: IFNβ immediately induces a burst of gene expression of proinflammatory chemokines in vitro that have potential relevance to IFNβ-related early adverse effects in MS patients in vivo

    Oral High-Dose Atorvastatin Treatment in Relapsing-Remitting Multiple Sclerosis

    Get PDF
    BACKGROUND:Recent data from animal models of multiple sclerosis (MS) and from a pilot study indicated a possible beneficial impact of statins on MS. METHODOLOGY/PRINCIPAL FINDINGS:Safety, tolerability and effects on disease activity of atorvastatin given alone or in combination with interferon-beta (IFN-beta) were assessed in a phase II open-label baseline-to-treatment trial in relapsing-remitting MS (RRMS). Patients with at least one gadolinium-enhancing lesion (CEL) at screening by magnetic resonance imaging (MRI) were eligible for the study. After a baseline period of 3 monthly MRI scans (months -2 to 0), patients followed a 9-month treatment period on 80 mg atorvastatin daily. The number of CEL in treatment months 6 to 9 compared to baseline served as the primary endpoint. Other MRI-based parameters as well as changes in clinical scores and immune responses served as secondary endpoints. Of 80 RRMS patients screened, 41 were included, among them 16 with IFN-beta comedication. The high dose of 80 mg atorvastatin was well tolerated in the majority of patients, regardless of IFN-beta comedication. Atorvastatin treatment led to a substantial reduction in the number and volume of CEL in two-sided multivariate analysis (p = 0.003 and p = 0.008). A trend towards a significant decrease in number and volume of CEL was also detected in patients with IFN-beta comedication (p = 0.060 and p = 0.062), in contrast to patients without IFN-beta comedication (p = 0.170 and p = 0.140). Immunological investigations showed no suppression in T cell response but a significant increase in IL-10 production. CONCLUSIONS/SIGNIFICANCE:Our data suggest that high-dose atorvastatin treatment in RRMS is safe and well tolerated. Moreover, MRI analysis indicates a possible beneficial effect of atorvastatin, alone or in combination with IFN-beta, on the development of new CEL. Thus, our findings provide a rationale for phase II/III trials, including combination of atorvastatin with already approved immunomodulatory therapy regimens. TRIAL REGISTRATION:ClinicalTrials.gov NCT00616187

    Evaluation of a Multiparametric Immunofluorescence Assay for Standardization of Neuromyelitis Optica Serology

    Get PDF
    Background: Neuromyelitis optica (NMO) is a severely disabling autoimmune disorder of the central nervous system, which predominantly affects the optic nerves and spinal cord. In a majority of cases, NMO is associated with antibodies to aquaporin-4 (AQP4) (termed NMO-IgG). Aims: In this study, we evaluated a new multiparametric indirect immunofluorescence (IIF) assay for NMO serology. Methods: Sera from 20 patients with NMO, 41 patients with multiple sclerosis (MS), 30 healthy subjects, and a commercial anti-AQP4 IgG antibody were tested in a commercial composite immunofluorescence assay ("Neurology Mosaic 17"; Euroimmun, Germany), consisting of five different diagnostic substrates (HEK cells transfected with AQP4, non-transfected HEK cells, primate cerebellum, cerebrum, and optic nerve tissue sections). Results: We identified AQP4 specific and non-specific fluorescence staining patterns and established positivity criteria. Based on these criteria, this kit yielded a high sensitivity (95%) and specificity (100%) for NMO and had a significant positive and negative likelihood ratio (LR+ = ∞, LR- = 0.05). Moreover, a 100% inter- and intra-laboratory reproducibility was found. Conclusions: The biochip mosaic assay tested in this study is a powerful tool for NMO serology, fast to perform, highly sensitive and specific for NMO, reproducible, and suitable for inter-laboratory standardization as required for multi-centre clinical trials
    • …
    corecore