50 research outputs found

    Cancer associated auto-antibodies to MUC1 and MUC4 - A blinded case control study of colorectal cancer in UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS)

    Get PDF
    Recent reports suggest that autoantibodies directed to aberrantly glycosylated mucins, in particular MUC1 and MUC4, are found in patients with colorectal cancer. There is, however, limited information on the autoantibody levels prior to clinical diagnosis, and their utility in cancer screening in the general population. In this study, we have generated O-glycosylated synthetic MUC1 and MUC4 peptides in vitro, to mimic cancer associated glycoforms, and displayed these on microarrays. The assay's performance was tested through an initial screening of serum samples taken from patients at the time of colorectal cancer diagnosis and healthy controls. Subsequently the selected biomarkers were evaluated in a blinded nested case control study, using stored serum samples from among the 50,640 women randomised to the multimodal arm of the UKCTOCS, where women gave annual blood samples for several years. Cases were 97 postmenopausal women who developed colorectal cancer following recruitment, and were age-matched to 97 women without any history of cancer. MUC1-STn and MUC1-Core3 IgG autoantibodies identified cases with 8.2% and 13.4% sensitivity, respectively, at 95% specificity. IgA to MUC4-glycoforms were unable to discriminate between cases and controls in the UKCTOCS sera. Additional analysis was undertaken by combining the data of MUC1-STn and MUC1-Core3 with previously generated data on autoantibodies to p53 peptides, which increased the sensitivity to 32.0% at 95% specificity in the UKCTOCS set. These findings suggest that a combination of antibody signatures may have a role as part of a biomarker panel for the early detection of colorectal cancer

    N-acetylgalactosaminyl transferase-3 is a potential new marker for non-small cell lung cancers

    Get PDF
    N-acetylgalactosaminyl transferase-3 (GalNAc-T3) is an enzyme involved in the initial glycosylation of mucin-type O-linked proteins. In the present study, we used immunohistochemistry to examine GalNAc-T3 expression in 215 surgically resected non-small cell lung cancers. We analysed the biological and clinical importance of GalNAc-T3 expression, especially with regard to its potential as a prognostic factor. We found that normal bronchial epithelial cells, bronchial gland cells, and alveolar pneumocytes showed cytoplasmic immunostaining for GalNAc-T3. Low expression of GalNAc-T3, observed in 93 of 215 tumours (43.4%), was found more frequently in tumours from smokers than those from nonsmokers (P=0.001), in squamous cell carcinomas than nonsquamous cell carcinomas (P<0.0001), and in moderately and poorly differentiated tumours than well differentiated tumours (P=0.0002). Multivariate logistic regression analysis showed that an association of low GalNAc-T3 expression with squamous cell carcinomas was the only one significant relationship of GalNAc-T3 expression with various factors (P<0.0001). Moreover, tumours losing GalNAc-T3 expression had a significantly higher Ki-67 labelling index than tumours retaining GalNAc-T3 expression (P=0.0003). Patients with low GalNAc-T3 expression survived a significantly shorter time than patients with high GalNAc-T3 expression in 103 pStage I non-small cell lung cancers (5-year survival rates, 58% and 78%, respectively; P=0.02 by log-rank test) as well as in 61 pStage I nonsquamous cell carcinomas (5-year survival rates, 63% and 85%, respectively; P=0.03). Low GalNAc-T3 expression was an unfavourable prognostic factor in pStage I non-small cell lung cancers (hazards ratio, 2.04; P=0.03), and in pStage I nonsquamous cell carcinomas (hazards ratio, 2.70; P=0.03). These results suggest that GalNAc-T3 is a new marker of non-small cell lung cancers with specificity for histology and prognosis

    Comparison of printed glycan array, suspension array and ELISA in the detection of human anti-glycan antibodies

    Get PDF
    Anti-glycan antibodies represent a vast and yet insufficiently investigated subpopulation of naturally occurring and adaptive antibodies in humans. Recently, a variety of glycan-based microarrays emerged, allowing high-throughput profiling of a large repertoire of antibodies. As there are no direct approaches for comparison and evaluation of multi-glycan assays we compared three glycan-based immunoassays, namely printed glycan array (PGA), fluorescent microsphere-based suspension array (SA) and ELISA for their efficacy and selectivity in profiling anti-glycan antibodies in a cohort of 48 patients with and without ovarian cancer. The ABO blood group glycan antigens were selected as well recognized ligands for sensitivity and specificity assessments. As another ligand we selected P1, a member of the P blood group system recently identified by PGA as a potential ovarian cancer biomarker. All three glyco-immunoassays reflected the known ABO blood groups with high performance. In contrast, anti-P1 antibody binding profiles displayed much lower concordance. Whilst anti-P1 antibody levels between benign controls and ovarian cancer patients were significantly discriminated using PGA (p = 0.004), we got only similar results using SA (p = 0.03) but not for ELISA. Our findings demonstrate that whilst assays were largely positively correlated, each presents unique characteristic features and should be validated by an independent patient cohort rather than another array technique. The variety between methods presumably reflects the differences in glycan presentation and the antigen/antibody ratio, assay conditions and detection technique. This indicates that the glycan-antibody interaction of interest has to guide the assay selection

    Revisiting the association between candidal infection and carcinoma, particularly oral squamous cell carcinoma

    Get PDF
    Background: Tobacco and alcohol are risk factors associated with cancer of the upper aerodigestive tract, but increasingly the role of infection and chronic inflammation is recognized as being significant in cancer development. Bacteria, particularly Helicobacter pylori, and viruses such as members of the human papilloma virus family and hepatitis B and C are strongly implicated as etiological factors in certain cancers. There is less evidence for an association between fungi and cancer, although it has been recognized for many years that white patches on the oral mucosa, which are infected with Candida, have a greater likelihood of undergoing malignant transformation than those that are not infected. Objective: This article reviews the association between the development of oral squamous cell carcinoma in potentially malignant oral lesions with chronic candidal infection and describes mechanisms that may be involved in Candida-associated malignant transformation

    Dual roles for hepatic lectin receptors in the clearance of chilled platelets

    No full text
    Rapid chilling causes glycoprotein-Ib (GPIb) receptors to cluster on blood platelets. Hepatic macrophage beta(2) integrin binding to beta-N-acetylglucosamine (beta-GlcNAc) residues in the clusters leads to rapid clearance of acutely chilled platelets after transfusion. Although capping the beta-GlcNAc moieties by galactosylation prevents clearance of short-term-cooled platelets, this strategy is ineffective after prolonged refrigeration. We report here that prolonged refrigeration increased the density and concentration of exposed galactose residues on platelets such that hepatocytes, through Ashwell-Morell receptor binding, become increasingly involved in platelet removal. Macrophages rapidly removed a large fraction of transfused platelets independent of their storage conditions. With prolonged platelet chilling, hepatocyte-dependent clearance further diminishes platelet recovery and survival after transfusion. Inhibition of chilled platelet clearance by both beta(2) integrin and Ashwell-Morell receptors may afford a potentially simple method for storing platelets in the cold

    Microvesicle Cargo of Tumor-Associated MUC1 to Dendritic Cells Allows Cross-presentation and Specific Carbohydrate Processing

    Get PDF
    Tumor-associated glycoproteins are a group of antigens with high immunogenic interest: The glycoforms generated by the aberrant glycosylation are tumor-specific and the novel glycoepitopes exposed can be targets of tumor-specific immune responses. The MUC1 antigen is one of the most relevant tumor-associated glycoproteins. In cancer, MUC1 loses polarity and becomes overexpressed and hypoglycosylated. Changes in glycan moieties contribute to MUC1 immunogenicity and can modify the interactions of tumor cells with antigen-presenting cells such as dendritic cells that would affect the overall antitumor immune response. Here, we show that the form of the MUC1 antigen, i.e., soluble or as microvesicle cargo, influences MUC1 processing in dendritic cells. In fact, MUC1 carried by microvesicles translocates from the endolysosomal/HLA-II to the HLA-I compartment and is presented by dendritic cells to MUC1-specific CD8(+) T cells stimulating IFN-γ responses, whereas the soluble MUC1 is retained in the endolysosomal/HLA-II compartment independently by the glycan moieties and by the modality of internalization (receptor-mediated or non-receptor mediated). MUC1 translocation to the HLA-I compartment is accompanied by deglycosylation that generates novel MUC1 glycoepitopes. Microvesicle-mediated transfer of tumor-associated glycoproteins to dendritic cells may be a relevant biologic mechanism in vivo contributing to define the type of immunogenicity elicited. Furthermore, these results have important implications for the design of glycoprotein-based immunogens for cancer immunotherapy. ©2013 AACR
    corecore