160 research outputs found

    A real-life comparative effectiveness study into the addition of antibiotics to the management of asthma exacerbations in primary care

    Get PDF
    Acknowledgements: This project was supported by the Respiratory Effectiveness Group. Data and data management support was provided in-kind by Optimum Patient Care (www.opcrd.co.uk) and Derek Skinner at OPC. Clare Murray is supported by the NIHR Manchester Biomedical Research Centre.Peer reviewedPostprin

    Climate Change and Our Environment: The Effect on Respiratory and Allergic Disease

    Get PDF
    Climate change is a constant and ongoing process. It is postulated that human activities have reached a point at which we are producing global climate change. This article provides suggestions to help the allergist/environmental physician integrate recommendations about improvements in outdoor and indoor air quality and the likely response to predicted alterations in the earth’s environment into their patient’s treatment plan. Many changes that affect respiratory disease are anticipated. Examples of responses to climate change include energy reduction retrofits in homes that could potentially affect exposure to allergens and irritants, more hot sunny days that increase ozone-related difficulties, and rises in sea level or altered rainfall patterns that increase exposure to damp indoor environments. Climate changes can also affect ecosystems, manifested as the appearance of stinging and biting arthropods in new areas. Higher ambient carbon dioxide concentrations, warmer temperatures, and changes in floristic zones could potentially increase exposure to ragweed and other outdoor allergens, whereas green practices such as composting can increase allergen and irritant exposure. Finally, increased energy costs may result in urban crowding and human source pollution, leading to changes in patterns of infectious respiratory illnesses. Improved governmental controls on airborne pollutants could lead to cleaner air and reduced respiratory diseases but will meet strong opposition because of their effect on business productivity. The allergy community must therefore adapt, as physician and research scientists always have, by anticipating the needs of patients and by adopting practices and research methods to meet changing environmental conditions

    SARS-CoV-2 surveillance in households with and without asthmatic/allergic children: The Human Epidemiology and Response to SARS-CoV-2 study (HEROS)

    Get PDF
    Rationale: Whether children and people with asthma and allergic diseases are at increased risk for SARS-CoV-2 infection is not known. Neither is their role in household transmission. Methods: Biweekly nasal sample collections and weekly surveys were conducted to identify incident SARS-CoV-2 infections among children (\u3c13 \u3eyears) and teenagers (13-21 years) enrolled in asthma/allergic disease focused cohorts, and their household members, from May 2020-February 2021. Probability of subject/household infections and household transmissions were calculated using time-to-event analyses, and factors associated with infection and transmission risk using regression analyses. Results: Household (N=1,394) and subject (N=4,142) SARS-CoV-2 infection probability was 25.8% and 14.0%, respectively, and was similar for children (14.0%,CI:8.0-19.6%), teenagers (12.1%,CI:8.2-15.9%), and adults (14.0%,CI:9.5-18.4%). Infections were symptomatic in 24.5% of children, 41.2% of teenagers, and 62.5% of adults. Exposure to both symptomatic (aHR=87.39,CI:58.02-131.63) and asymptomatic (aHR=27.80,CI:17.16–45.03) infected household members was a risk factor for infection. Food allergy was associated with decreased infection risk (aHR=0.50,CI:0.32-0.81), but asthma was not (aHR=1.04,CI:0.73-1.46). Household infection risk was associated with attending in-person school (aHR=1.67,CI:1.09-2.57). Household secondary attack rate was 57.7%. Decreased risk of household transmission was associated with teen age, lower BMI, and lower viral load. Conclusions: Asthma does not increase risk of SARS-CoV-2 infection, while food allergy is protective. SARS-CoV-2 infection risk in children is similar to that of teenagers and adults. SARS-CoV-2 transmission risk and secondary attack rate is much higher than previously estimated in households with children, likely driven by the high frequency of asymptomatic childhood infections
    corecore