10 research outputs found

    A Wideband Non-Stationary 3D GBSM for HAP-MIMO Communication Systems at Millimeter-Wave Bands

    No full text
    High-altitude platforms (HAPs) are considered to be the most important equipment for next-generation wireless communication technologies. In this paper, we investigate the channel characteristics under the configurations of massive multiple-input multiple-output (MIMO) space and large bandwidth at millimeter-wave (mmWave) bands, along with the moving essence of the HAP and ground terminals. A non-stationary three-dimensional (3D) geometry-based stochastic model (GBSM) is proposed for a HAP communication system. We use a cylinder-based geometric modeling method to construct the channel and derive the channel impulse response (CIR). Additionally, the birth–death process of the scatterers is enclosed using the Markov process. Large-scale parameters such as free space loss and rainfall attenuation are also taken into consideration. Due to the relative motion between HAP and ground terminals, the massive MIMO space, and the wide bandwidth in the mmWave band, the channel characteristics of HAP exhibit non-stationarities in time, space, and frequency domains. By deriving the temporal auto-correlation function (ACF), we explore the non-stationarity in the time domain and the impact of various parameters on the correlations across the HAP-MIMO channels. The spatial cross-correlation function (CCF) for massive MIMO scenarios, and the frequency correlation function (FCF) in the mmWave bands are also considered. Moreover, we conduct simulation research using MATLAB. Simulation results show that the theoretical results align well with the simulation results, and this highlights the fact that the constructed 3D GBSM can characterize the non-stationary characteristics of HAP-MIMO channels across the time, space, and frequency domains

    Salidroside affects the Th17/Treg cell balance in aplastic anemia via the STAT3/HIF-1α/RORγt pathway

    No full text
    ABSTRACTBackground Acquired aplastic anemia (AA) is a life-threatening disease associated with an imbalance in Th17/Treg cells. Regulating this balance may be an effective treatment approach for AA. Rhodiola rosea has shown efficacy in AA treatment, but its mechanisms remain unclear.Purpose We investigated salidroside's effect (a component of Rhodiola rosea) on Th17/Treg balance in adult AA patients and a mouse model.Methods HIF-1α mRNA and protein levels were measured in AA patients' peripheral blood. Flow cytometry, qRT-PCR, and WB analyzed salidroside's impact on T cell differentiation, Th17 cells, Treg cells, STAT3, HIF-1α, and RORγt expression. ELISA measured hematopoietic growth factors in mouse serum.Results AA patients exhibited elevated HIF-1α levels. Salidroside improved hematopoietic function, increasing blood cell count and enhancing bone marrow. Salidroside induced SCF, TPO, and IL-3 expression while inhibiting IL-2 in mice. Salidroside reduced STAT3, HIF-1α, RORγt, and IL-17a, while increasing FoxP3 expression, correcting the Th17/Treg imbalance in vitro and in vivo.Conclusion Salidroside has potential as a novel AA treatment by correcting the Th17/Treg imbalance through the STAT3/HIF-1α/RORγt pathway

    Ultra-durable superhydrophobic cellular coatings

    No full text
    Abstract Developing versatile, scalable, and durable coatings that resist the accretion of matters (liquid, vapor, and solid phases) in various operating environments is important to industrial applications, yet has proven challenging. Here, we report a cellular coating that imparts liquid-repellence, vapor-imperviousness, and solid-shedding capabilities without the need for complicated structures and fabrication processes. The key lies in designing basic cells consisting of rigid microshells and releasable nanoseeds, which together serve as a rigid shield and a bridge that chemically bonds with matrix and substrate. The durability and strong resistance to accretion of different matters of our cellular coating are evidenced by strong anti-abrasion, enhanced anti-corrosion against saltwater over 1000 h, and maintaining dry in complicated phase change conditions. The cells can be impregnated into diverse matrixes for facile mass production through scalable spraying. Our strategy provides a generic design blueprint for engineering ultra-durable coatings for a wide range of applications
    corecore