3,823 research outputs found

    AnonyControl: Control Cloud Data Anonymously with Multi-Authority Attribute-Based Encryption

    Full text link
    Cloud computing is a revolutionary computing paradigm which enables flexible, on-demand and low-cost usage of computing resources. However, those advantages, ironically, are the causes of security and privacy problems, which emerge because the data owned by different users are stored in some cloud servers instead of under their own control. To deal with security problems, various schemes based on the Attribute- Based Encryption (ABE) have been proposed recently. However, the privacy problem of cloud computing is yet to be solved. This paper presents an anonymous privilege control scheme AnonyControl to address the user and data privacy problem in a cloud. By using multiple authorities in cloud computing system, our proposed scheme achieves anonymous cloud data access, finegrained privilege control, and more importantly, tolerance to up to (N -2) authority compromise. Our security and performance analysis show that AnonyControl is both secure and efficient for cloud computing environment.Comment: 9 pages, 6 figures, 3 tables, conference, IEEE INFOCOM 201

    Survey of the organic food market in China

    Get PDF
    The recent development in the organic agriculture space in China has been interesting from a business perspective. While China is traditionally a strong producer of organic products, most of the output are exported. However, domestic demand has increased significantly in the past decade, which brought about a growing market. The expansion of this market will not only benefit the companies involved, but also the consumers as food safety issues continue to build up in China. In this paper, we first provide an overview of the history and discuss the state of the related markets, and then present a summary of a field trip we conducted in June 2014, and finally point to areas that deserve further investigations

    Competing electronic orders on Kagome lattices at van Hove filling

    Full text link
    The electronic orders in Hubbard models on a Kagome lattice at van Hove filling are of intense current interest and debate. We study this issue using the singular-mode functional renormalization group theory. We discover a rich variety of electronic instabilities under short range interactions. With increasing on-site repulsion UU, the system develops successively ferromagnetism, intra unit-cell antiferromagnetism, and charge bond order. With nearest-neighbor Coulomb interaction VV alone (U=0), the system develops intra-unit-cell charge density wave order for small VV, s-wave superconductivity for moderate VV, and the charge density wave order appears again for even larger VV. With both UU and VV, we also find spin bond order and chiral dx2βˆ’y2+idxyd_{x^2 - y^2} + i d_{xy} superconductivity in some particular regimes of the phase diagram. We find that the s-wave superconductivity is a result of charge density wave fluctuations and the squared logarithmic divergence in the pairing susceptibility. On the other hand, the d-wave superconductivity follows from bond order fluctuations that avoid the matrix element effect. The phase diagram is vastly different from that in honeycomb lattices because of the geometrical frustration in the Kagome lattice.Comment: 8 pages with 9 color figure

    Constructing minimum energy mobile wireless networks

    Get PDF

    Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection

    Full text link
    Multi-class cell nuclei detection is a fundamental prerequisite in the diagnosis of histopathology. It is critical to efficiently locate and identify cells with diverse morphology and distributions in digital pathological images. Most existing methods take complex intermediate representations as learning targets and rely on inflexible post-refinements while paying less attention to various cell density and fields of view. In this paper, we propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions and is trained collaboratively through two sub-networks, a global and a local network. The local branch learns to infer distorted input images of smaller scales while the global network outputs the large-scale predictions as extra supervision signals. We further introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training. The AAT module works by learning to capture the transformed image regions that are more valuable for training the model. Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.Comment: ICCV 2023, released code: https://github.com/lhaof/ACForme

    Attentive Symmetric Autoencoder for Brain MRI Segmentation

    Full text link
    Self-supervised learning methods based on image patch reconstruction have witnessed great success in training auto-encoders, whose pre-trained weights can be transferred to fine-tune other downstream tasks of image understanding. However, existing methods seldom study the various importance of reconstructed patches and the symmetry of anatomical structures, when they are applied to 3D medical images. In this paper we propose a novel Attentive Symmetric Auto-encoder (ASA) based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks. We conjecture that forcing the auto-encoder to recover informative image regions can harvest more discriminative representations, than to recover smooth image patches. Then we adopt a gradient based metric to estimate the importance of each image patch. In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics. Moreover, we resort to the prior of brain structures and develop a Symmetric Position Encoding (SPE) method to better exploit the correlations between long-range but spatially symmetric regions to obtain effective features. Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models on three brain MRI segmentation benchmarks.Comment: MICCAI 2022, code:https://github.com/lhaof/AS

    Low Resolution Face Recognition in Surveillance Systems

    Get PDF
    In surveillance systems, the captured facial images are often very small and different from the low-resolution images down-sampled from high-resolution facial images. They generally lead to low performance in face recog-nition. In this paper, we study specific scenarios of face recognition with surveillance cameras. Three important factors that influence face recognition performance are investigated: type of cameras, distance between the ob-ject and camera, and the resolution of the captured face images. Each factor is numerically investigated and analyzed in this paper. Based on these observations, a new approach is proposed for face recognition in real sur-veillance environment. For a raw video sequence captured by a surveillance camera, image pre-processing tech-niques are employed to remove the illumination variations for the enhancement of image quality. The face im-ages are further improved through a novel face image super-resolution method. The proposed approach is proven to significantly improve the performance of face recognition as demonstrated by experiments
    • …
    corecore