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Energy conservation is a critical issue in designing wireless ad hoc networks, as the nodes 
are powered  by batteries only. Given a set o f  wireless network nodes, the directed weighted 
transmission graph Gt has an edge uv  i f  and only i f  node v is in the transmission range 
o f  node u and the weight o f  uv  is typically defined as II,,vll + c f o r  a c o n s t a n t  2 <_ 

t~ < 5 and c > O. The minimum p o w e r  topology Gm is the smallest subgraph o f  Gt that 
contains the shortest paths  between all pairs  o f  nodes, i.e., the union o f  all shortest paths. 
In this paper, we described a distributed posit ion-based networking protocol to construct 
an enclosure graph G~, which is an approximation o f  Gin. The time complexity o f  each 
node u is O(min(dG~ (u)dG~ (u),  dG~ (u) log dG~ (u))), where d c ( u )  is the degree o f  node u 
in a graph G. The space required at each node to compute the minimum p o w e r  topology is 
O(dG~ (u) ). This improves the previous result that computes Gm in O(dG, (u) a) time using 
O(dGt(U) 2) spaces. We also show that the average degree dG, (u )  is usually a constant, 
which is at most  6. Our result is f irst  developed f o r  stationary network and then extended 
to mobile networks. 

I.  I n t r o d u c t i o n  

Mobile wireless networking has received significant 
attention over the last few years due to their wide po- 
tential applications in various situations such as bat- 
tlefield, emergency relief and etc. [17, 19]. There are 
no wired infrastructures or cellular networks in ad hoc 
wireless network. Mobile nodes communicate with 
each other either through a single-hop transmission 
if  the receiver node is within the transmission range 
of  sender, or through multi-hop wireless links by us- 
ing intermediate nodes to relay the message. In other 
words, each node in the network also acts as a router, 
forwarding data packets for other nodes. A single 
transmission by a node can be received by all nodes 
within its transmission range. There are two models 
of  the transmission range of  all nodes: either all nodes 
have the same transmission power, or each node can 
adjust its transmission power independently accord- 
ing to its neighborhood information to possibly reduce 
the energy consumption. In this paper, we always as- 
sume that each mobile node can adjust the transmis- 
sion power accordingly. Consequently, even a node v 
is within the transmission range of  another node u, it 
may be energy efficient to use another node to relay 
the signal sent from u to v. Each mobile node typi- 
cally has a portable set with transmission and recep- 
tion processing capabilities. In addition, we assume 

that each node has a low-power GPS receiver, which 
provides the position information of  the node itself. 
There are also several other means to get the relative 
or absolute position of  wireless node. One way is to 
use signal strength and direction. 

In this paper, we model a wireless network by a 
weighted directed graph Gt = (V, E) .  Here V is the 
set of all mobile nodes, and edge (u, v) 6 E if  and 
only if the node v is in the transmission range of  the 
node u. The weight of the edge (u, v) is the power 
consumed for transmitting signal from u to v and pos- 
sibly the energy consumed by node v to process the 
received signal. Hereafter, we call Gt the transmis- 
sion graph. When all nodes have the same transmis- 
sion range, the transmission graph is often called the 
unit disk graph, whose properties were studied exten- 
sively. We assume that Gt is strongly connected. Here 
a graph is strongly connected if  there is a directed path 
from any node to any other node. 

A central challenge in the design of  ad  hoc net- 
works is the development of  dynamic routing proto- 
cols that can efficiently find energy-efficient routes be- 
tween two communication nodes. In recent years, a 
variety of  routing protocols [2, 13, 14, 15, 16, 20] tar- 
geted specifically for ad hoc environment have been 
developed. For the review of  the state of the art rout- 
ing protocols, see surveys by Royer and Toh [19] and 
by Ramanathan and Steenstrup [17]. Energy conser- 
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vation is a critical issue in ad hoc wireless network 
for the node and network life, especially in the sensor 
networks, as the nodes are powered by batteries only. 
Thus, it is almost imperative to find energy-efficient 
routes to conserve energy. Notice that there are two 
different objectives in minimizing the consumed en- 
ergy. One is to minimize the energy used by all nodes 
evolved in one communicat ion session. The other ob- 
jective is to make the network life as longer as pos- 
sible. In this paper, we concentrate on constructing a 
subgraph of  the transmission graph such that we could 
still find a path conserving energy for one communi-  
cation session. It is not the intension of  this paper 
to find this path, which can be done by shortest path 
algorithm or be approximated by some other algo- 
rithms. Entending the network life involves the global 
scheduling of  different routings, which was also stud- 
ied extensively [3, 10]. 

In this paper, we consider how to find a distributed 
networking protocol optimized for achieving the min- 
imum energy for randomly deployed ad hoc networks. 
A directed path from a node s to a node t is said 
to be the minimum-power path if  it consumes the 
least power among all paths f rom 8 to t. Then, our 
objective is to find the min imum directed subgraph 
G m =  (V, E )  of  Gt ,  which is union of  the minimum- 
power paths between any pair of  nodes. Hereafter, 
the graph Gm is also called minimum-power topoi- 
ogy. Given a node ~, call a node v a neighbor of  u 
if  there is no power efficient two-hops relay for the 
signal f rom ~ to v. In other words, edge uv is the 
minimum-power  path for pair of  nodes u and v. Thus, 
graph Gm contains all such edges. 

Rodoplu and Meng [18] desclibed a distributed pro- 
tocol to find an application of  the min imum-power  
topology for a stationary ad hoc network and dis- 
cussed possible extensions to the dynamic network. 
Their algorithm finds the topology via a local search 
in each nodes surrounding. Each mobile node u first 
finds all nodes, denoted by T ( u ) ,  lied in its transmis- 
sion range. The node u then tries to find nodes in 
T(u) such that it can not be the neighbor of  u. How- 
ever, their protocol is not t ime and space efficient. The 
worst t ime complexity could beO(da~(u)a), where 
da~ (u) is the number  of  nodes lied in the transmission 
range of  u. Moreover, the possible space required by 
node u is O(do,(u)2). 

In this paper, we described a distributed position- 
based networking protocol optimized for min imum 
energy consumption in mobile networks. Instead 
of  constructing the min imum-power  topology Gin, 
we construct an enclosure graph G , ,  which contains 

Gm but not much larger. The enclosure graph is 
formed by connecting each node to its neighbors. 
Each mobile node u, instead of  finding nodes that 
can not be served as relay nodes [18], tries to find 
the nodes that are guaranteed to be the neighbors o f  
u.  The proposed protocols are more time-efficient 
and space-efficient than that proposed by Rodoplu 
and Meng [18]. The time complexi ty o f  each node 
u is O(min(da~  (u)dc~ (u), da, (u) log dG~ (u)))  when 
ot = 2 or c = 0, where da(u) is the degree of  node 
u in a graph G. We also show that in most  case, the 
average degree dab (u) is usually a constant  by show- 
ing that the graph G~ is a subgraph of  the Delaunay 
triangulation of  all mobile nodes. The space required 
at each node u is O(da,(u)).  Our result is first de- 
veloped for stationary network and then extended to 
mobile network. 

The rest of  the paper is organized as follows. In 
Section II, we first review some preliminary defini- 
tions and results related to the min imum energy topol- 
ogy and enclosure graph. In Section III, we study the 
basic properties o f  the neighbors of  a node and the en- 
closure graph. Our distributed algorithm is proposed 
in Section IV and it is then extended for dynamic  wire- 
less ad hoe network in section V. We conclude our 
paper in Section VI. 

II. P r e l i m i n a r i e s  

A major  focus of  this work is to design a network- 
ing protocol that is self-configuring and to construct 
a sparse supergraph of  all shortest paths between all 
pairs o f  nodes. We consider the true peer-to-peer case, 
in which all nodes can send messages to all other 
nodes. 

II.A. E n e r g y  C o n s u m p t i o n  Model  

In the most  common power-attenuation model,  the 
signal power falls as rl-a -, where r is the distance from 
the transmitter antenna and cz is a constant between 
2 and 5 dependent  on the wireless transmission en- 
vironment.  I This is typically called the path loss. 
We always assumed that all receivers have the same 
power threshold for signal detection, which are then 
typically normalized to one. The path loss normal ly  
depends on the heights o f  the transmit antennas as 

ITo make this model  meaningful ,  we  always assume that the 
dis tance  be tween  any two nodes is at least  one unit  so the above 
mode l  does not  violate the energy-consumpt ion  law. We also as- 
sume that  the unit o f  power  and the unit  o f  d is tance  be tween  nodes 
satisfies the path loss formula.  
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well as the transmitter-receiver separation. In this pa- 
per, we assume that all mobile devices have similar 
antenna heights so that we will only concentrate on 
path loss that is distance-dependent. With these as- 
sumptions, the power required to support a link be- 
tween two nodes u and v separated by distance r is 
r c~, which is called the transmitter p o w e r  of node u. 
By a simple geometry computing, it is easy to see 
that relaying signal between nodes may result in lower 
power consumption than communication over a large 
distances due to the non-linear power attenuation. For 
convenience, hereafter, we use I luvll to denote the Eu- 
clidean distance between two geometry nodes u and 
V .  

As a simple illustration, consider three nodes s, r,  
and d on the plane as in Figure 1. Assume that all 
three nodes use identical transmitters and receivers 
and ot = 2. The power to transmit a signal from s to 
d is therefore I I dl I I f  w e  use  the  n o d e  r to re lay  the 
signal, the total power used is II rll 2 + Ilrdll 2, which 
is less than llsdll 2. In other words, if s wants to send 
a messages to any node d lying in the right side of  the 
line l, relaying through node r always consumes less 
power than directly transmitting to d. 

l 

s I r  
I 
I 

Figure 1: Relaying through other node r consumes 
less power than directly transmitting from s to d. 

I f  only path loss is considered, recently, Li et al. 

[9, 11] described several methods that generate the 
minimum-power topology with theoretical guarantee. 
For example, they showed that the Gabriel graph al- 
ways contains the minimum-power topology. Li [8] 
also show that the localized Delaunay triangulation 
contains the minimum-power path; moreover, given 
any pair of  nodes, it contains a path whose length is 
no more than 2.5 times length of  the shortest path con- 
necting them. He also show that localized Delaunay 
triangulation is a planar graph. 

There is also another source of power consumption 
we must consider in addition to the path loss. When a 
node receives a signal from other node, it needs con- 
sume some power to receive, store and then process 
that signal [18]. This additional power consumed at 
the receiver node is referred as the receiver  p o w e r  at 

the relay node. Typically, every relay node consumes 
the same receiver power due to the nature of  its op- 
erations. Hereafter, we will denote such power by a 
constant c. Notice that additional power will also be 
consumed when running the routing algorithm. In the 
design of  modern processors, however, the power con- 
sumption required for such processing and computa- 
tion can be made negligible compared to the transmit- 
ter power and receiver power. 

In this paper, we assume that the mobile nodes are 
given as a finite point set ]2 in a two-dimensional 
plane. Let n be the number of  mobile nodes. Con- 
sider any unicast 7r from a node u E V to another 
node v E 1): 

7r = POPl "" "Pm--lPm~ w h e r e  u = P o ,  v =Pro .  

The total transmission power consumed by this path 7r 
is 

arir~ 

[Ip,_lp, l[ ~ + m . c .  
i=1 

We define a weighted transmission graph Gt over all 
nodes of V, and the weight of  an edge PiPj  is equal 
to Ilp p¢ll + c. T h e n  the minimum-power path can 
be computed by applying any shortest path algorithm 
such as Dijkstra's algorithm. The cost of  the central- 
ized Dijkstra's algorithm is O ( n  log n + E) ,  where E 
is the number of edges of  the graph Gt.  Notice that 
the transmission graph could have O(n  2) edges. This 
implies that it needs O ( n  2) to compute the shortest 
path by applying Dijkstra's algorithm on Gt. Later, 
we will show that it is sufficient to apply the short- 
est path algorithm on an enclosure graph Ge (defined 
later), which is usually a sparse graph. Thus it is more 
time efficient to compute the minimum-power routing 
using the enclosure graph. 

II.B. N e t w o r k  M o d e l  

A wireless network is modelled by a directed trans- 
mission graph Gt = (V, E) .  Let T ( u )  be the set 
of nodes within the transmission range of  node u. 
Thus, all nodes in T ( u )  can receive the message trans- 
mitted by node u, and then, can serve as the relay 
nodes. However, it may be not power-efficient to use 
all nodes in T ( u )  to directly relay the message from 
u to other nodes. 2 For example, let's consider the 
following simple configuration of three mobile nodes 
u, r, d illustrated by the Figure 1. Let a = 2. Assume 
that nodes r and d are within the transmission range 

of the node u and II rll 2 + Ilrdll 2 + c _< II ,dll 2. Then 

2Here a node v directly relays the signal from a node u if u 
sends signal to v and v then relay it. 
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it is power  efficient to use node r to relay the signal 
f rom u to node d than transmitting directly to node 
d. It implies that node d can never be used to directly 
relay the signal f rom node u. As shown later, the aver- 
age number  of  nodes that can directly relay the signal 
from a node is at most  6 for most situations. 

Based on the observation concerning relays, we 
will first consider how to find the min imum-power  
topology in a wireless network where all nodes are 
assumed to be stationary. For  example, the sensors 
of  sensor-based wireless network has little movement .  
Our main goal is to develop an algori thm that requires 
mainly  local computat ion for computing and updating 
the topology. From the perspective o f  the power  con- 
sumption, a distributed algorithm running almost  ex- 
clusively on local information requires the transmis- 
sion only over small distances. It also dramatically 
reduces the interference levels among nodes. We sep- 
arately study the fol lowing cases: the receiver's cost 
c is negligible; the propagation environment  constant 
oL = 2, and the general cases c > 0 and 2 < ot < 5. 

Isrl 

Figure 2: The relay regions R ( s ,  r )  denoted by the 
shaded area. Lef t  c~ = 2; right a = 4. 

node p. Assume that node r has coordinates (0, 0) 
and node s has coordinates ( - l l s r l l ,  0).  W h e n  c~ = 2, 
d = (Zd, Yd) C R(z ,  r )  implies that 

118dll 2 = (11"~11 + ~d)  2 -I- y d  2 

> IIs~ll 2 + II~dll 2 + c 

= II~rll 2 + ~ + y~ + c. 

It implies that xa > 2 - ~ "  In other words, i f  s = 

(--I1"~11,0) and r = (0, 0), then 

II .C.  B a s i c  D e f i n i t i o n s  

First let us study a simple case. Assume that node s 
want  to send a message to node d. Accordingly, node 
s is called the source (transmitter) and node d is called 
the destination (receiver). A node r could be used as 
a relay node i f  and only i f  

118dll ~ + c > I1~11 ~ + c + I l rdl l  ~ + ¢. 

Notice that [[sdl[ a + c is the power incurred if  node 
s directly transmits signal to node d, and [[sr[[ a + 
c + I l rd l l "  + c is the power incurred i f  node s uses 
the node r as the relay node for transmission f rom s 
to node d. Thus, given node s and node r ,  the locus 
of  all node d, such that relaying through node r con- 
sumes less power than directly transmitting from s to 
d, is called the relay region o f t  tbr s [18]. Hereafter, 
we denote such relay region as R~,~(s, r).  When it 
is clear f rom the context, we will drop the c~ and/or c 
f rom R%~ ( s , r ) . 

Definition 1 [RELAY R E G I O N ]  The relay region o f  a 
node r f o r  a node 8 is defined as 

R~,~(~,~-)  = { ~  I IIs~ll ~ > II~rll ~ + I1~11 ~ + c} .  

Figure 2 illustrates typical relay regions in propa- 
gation environment  with a = 2 and a = 4 respec- 
tively. We then study in detail what  is the mathemat-  
ical formula  to represent the relay region R=,c(s, r) .  
Let  (xp, yp) denote the position of  a two-dimensional  

c 

R 2 , c ( 8 , ~ )  = { ( ~ , u )  I ~ > 211~1-----~}- 

Therefore, the boundary of  the relay region R2,c(s,  r)  
for any two nodes s and r is a line perpendicular to s r  
and node r has distance 2 - ~  to the relay region. See 
the above Figure 2 for an illustration. When  o~ = 4, 
we have 

II~dFI 4 = ((118~11 + ~d)  2 + y~)2 

= (11~112 + ~2  + u2 + 2~dl l sTi i )2  

> I1~114 + Ilrdll 4 + c 
2 2 _- i1,~114 + ~ + y4  + 2 ~ d y  d _q_ c. 

It implies that 

(2~d+l ls~l l )Yd%-2~ad+311s~l l~2d+211s~l l=~d > - -  

Given any two nodes s and r,  let hrs be the half  
plane defined by the bisection line o f  segment  sr  and 
containing node r .  Then it is easy to show that the re- 
lay region R~,,c(s, r )  is inside hr ,  for any propagation 
environment  constant a and receiver cost c. 

R e m a r k  1 The fac t  that a node d is in the relay re- 
gion R ( s ,  r)  does not imply that node r has to relay 
the signal to d. The fac t  that a node d is not in the 
relay region R ( s ,  r) does not imply that node r will  
not relay the signal to d. It is not difficult to construct 
examples to verify these. 
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We then study the properties of the structure of  the 
minimum energy topology of  a set of  stationary nodes. 
For simplicity, let Ea,c(S, r) be the complement of  
Ra,c(s ,  r). The region Ea,c(s,  r) is called the enclo- 
sure region of node s by node r. 

Definition 2 [ENCLOSURE REGION] The enclosure 
region Ea,c(s) of  a node s is defined as 

= N 
,-eT(s) 

Notice that the above definition is analog to the 
Voronoi region of a node s, which is defined as 

V(s) = {z I Vq • V, II~sll < II~qll}- 

Remember that here T ( s )  is the set of  nodes lying 
within the transmission range of node s. 

A node u is said to a neighbor of a node s if  it is 
inside the enclosure region Ea  (s) of node s. Figure 
3 shows an example of the enclosure region and the 
neighbors of  a node s. 

,~";~ 

..//.'//" \ 
Pt 

Figure 3: The enclosure region and the neighbors of a 
node when t~ = 2. Here N ( s )  = {Pl,PZ,Pa,P4,P~}.  

Definition 3 [NEIGHBORS] The neighbors N~,e(s)  o f  
a node s is defined as 

= I ' , , • T C s ) ,  • 

When it is clear from the context, we will also drop 
the constant cz and/or c from E,~,c(s, r) and N,~,c(s). 
Notice that in [18] they defined the enclosure region 
a s  

~e~(~) 

and define the neighbor as 

N~(s) = {u I ~ • ~V and u • E~(s)}. 

Unfortunately, there are discrepancy in the their def- 
initions of  enclosure region and neighbor. Consider 
an example illustrated in Figure 3. The node v is 

not in the neighbor set N ~ ( s )  of  node s because it 
is power efficient to use the node p2 to relay the mes- 
sage from s to v. However, we need node v to define 
the enclosure region. Thus, node w is not the neigh- 
bor of  node s. However, by the definition of  [18], the 
set { p l , p 2 , p a , P 4 , p s , w }  is also a feasible solution for 

N~,(s). A main observation here is that even a node 
does not affect E ~ ( s ) ,  it is still possible that this node 
is inside E ~ ( s )  and thus it is the neighbor o f s .  For ex- 
ample, in Figure 3, if  node v does not exist, then node 
w is a neighbor of  s. As [18], we define the enclosure 
graph as following. 

Definition 4 [ENCLOSURE GRAPH] The enclosure 
graph G (~'c) = (V, E )  o f  a set o f  mobile nodes 1) 
is the directed graph whose vertices are )) and whose 
edges are all (u, v), where v • N~,c(u). 

When it is clear from the context, we will also drop 

the a and/or c from G(, ~'c). Then we proved that the 
minimum energy topology is always contained in the 
enclosure graph. 

Theorem 1 [MAIN THEOREM] The enclosure graph 
Ge contains the minimum-power  topology. 

PROOF. Consider any two nodes s and d. Let path 
7r = SVl .. • vmd  be the minimum energy path from s 
to d. Then it is obvious that we can not use any other 
node to relay the signal from s to Vl. It implies that Vl 
is in the neighbors N ( s )  of node s. Consequently, the 
enclosure graph Ga,c contains the minimum energy 
topology. [] 

Notice that it is not difficult to construct an exam- 
ple such that the enclosure graph is not equal to the 
minimum energy topology. Figure 4 shows such an 
example when cz = 2 and c = 0. It is not difficult to 
show that edge uv  does not belong to the minimum- 
power topology because we have a path u x v v  con- 
suming less power. However, as we will showed later, 
usually the number of edges in Ge is O ( n ) .  

III.  P r o p e r t i e s  o f  t h e  M i n i m u m  
P o w e r  N e t w o r k  

In this section, we review and develop some mathe- 
matical theories studying the general properties of the 
enclosure graph and the minimum-power topology on 
stationary ad hoc network. 

Mobile Computing and Communications Review, Volume 5, Number 4 59 



..._. - ........... --..,.~. ,,, 

"-., ........ ....-'~" 

Figure 4: The enclosure graph and the min imum- 
power  topology is not same: the drawn graph is enclo- 
sure graph while the min imum-power  topology does 
not have uv .  

III.A.  G e n e r a l  P r o p e r t i e s  

It is shown in [18] that the relay region satisfies the 
fol lowing properties. 

L e m m a  2 Re lay  regions sat is fy  the f o l l o w i n g  proper -  
ties. 

1. f o r  any  node  u, u ¢ R ( s ,  u)  

2. for  any two nodes u, v, i f  u • R(s ,  v) then v ¢ 
R ( s , ~ )  

. f o r  any  three nodes  u ,  v ,  w,  it  is imposs ib le  tha t  
• R(s ,  ~), ~ • R(~, ~) ,rod ~ • R(~, ~)  are 

all  satisfied. 

I f  a n o d e  ~ • R ( ~ , ~ )  then IIs~ll  > II~vll and 
I1~11 > I1~-II. Then it is easy to show the correct- 
ness o f  the above lemma. However,  it is possible there 

are m > 3 nodes Pl ,  P2, " " ,  Pro- l ,  Pm such that 
Pi +l  • R ( p i - - l , p ~ )  for all 1 < i < m.  He repo  = P r o  
and P m + t  ---- Pl- For example,  let us consider six 
nodes that form a hexagon PlP2PaP4PsP6.  Here the 
side length of  the hexagon is ~fc + • and t~ = 2. 
Then it is easy to show that Pi+l  • R ( p i - l , p i )  for 
all 1 < i < 6. I f  the side length o f  the hexagon is less 
than v/-c/2, then the enclosure graph defined on these 
6 nodes is a completed graph. 

L e m m a  3 L e t  node  v be the neares t  n e i g h b o r  o f  n o d e  

u. Then  v E N ~ ( u ) .  

PROOF. Assume that v ~ N~ (u). In other words, it is 
power efficient to relay the signal f rom node u to node 
v through some other nodes. Assume that a sequence 
of  node e l ,  v 2 , . . . ,  vm  is used to relay. It is obvious 
that the total power consumed by path u v l v 2  • - - v m v  

is at least I 1 ~ 1 1  ~ + ~ ,  w h i c h  is at  least II~vll ~ + ~ .  I t  is 
a contradiction that path UVlV 2 • • • VmV consumes less 
power  than directly transmitting f rom u to v. There- 
fore v E N a ( u ) .  [] 

III .B.  W i t h o u t  R e c e i v e r  C o s t  

We then study the situation that the receiver's cost 
is negligible compared to the transmission cost in- 
curred. In [23], Wan et  aL presented several approxi- 
mations algorithm for constructing the broadcast  tree 
such that the total energy consumed by all nodes is 
minimized when there is no receiver's cost. In this pa- 
per, we constructed a networking graph that contains 
the min imum-power  path between any pair of  nodes. 

L e m m a  4 Given  two  n o d es  s a n d  r, the relay region 

R , l ( S , r  ) C n ~ ( s , r )  / f ~ l  < ~ .  a n d  the rece iver ' s  
cos t  c ~ O. 

PROOF. Consider  any point x in the relay re- 
gion R~ 1 (s, r ) .  F rom definition 1, we  know that 

IIs~ll  ~ > I l s r l l  ~1 + IIr~l l  ~1. A n d  it is always true 
that IIs~ll  > I1~11 and IIs~ll  > I I r ~ l l - T h e  fact  that 
IIs~ll  ~ = I1~11 ~ 1 -  118~11 ~ - ~ 1  i m p l i e s  that 

IIs~ll  ~ > ( l l s~ l l  ~1 + I I r ~ l l ~ i )  - IIs~ll  ~ - ~  

= II~rll ~1 - IIs~ll  ~ - ~ 1  + IIr~ll ~ . I I s ~ l l ~ - ~  

> I lsr l l  ~1 • I I s ~ - I I ~ - ~  + I1~11 ~ • I l r z l l ~ - ~  

= I1~11 ~2 + IIr~ll ~=. 

Therefore point x is also in the relay region 
/~a2 (s, r)  by  definition. This completes the proof  that 

a 0 ~ 1 ( 8 ,  T ) C Rot2(8,T). [] 

Figure 5: The Delaunay neighbors D ( u )  and the 

minimum-power  neighbors N ( u )  (solid nodes). Here 

D ( u )  - N ( u )  = ,Iv}.  

Let D e l  V be the Delaunay triangulation of  all mo- 
bile nodes. Here a tr iangulation is Delaunay if  the 
interior of  the circumcircle o f  each of  its triangles 
does not contain any nodes. Le t  D ( u )  be the nodes 
in D e l  1; that are connected to node u. We then show 
that D ( u )  contains the neighbors N ( u )  of  node u i f  
c : 0. See Figure 5 for an illustration. 

L e m m a  5 The ne ighbors  D ( u )  o f  a node  u in the D e -  
launay  t r iangula t ion  con ta ins  N ~  (u)  f o r  any  ~ >_ 2 i f  
the receiver  cos t  is negligible,  i.e., c : O. 
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PROOF. It is equivalent to show that for any node 
in T (u )  -- D ( u ) ,  it is not inside the enclosure region 
E(u ) .  Consider a node z E T ( u )  -- D ( u ) .  Assume 
that it is in the wedge region defined by , (wuv .  Here 
triangle V w u v  is a Delaunay triangle connected to 
node u. Let y be the point such that yw is perpen- 
dicular to w u  and yv  is perpendicular to vu. Figure 
6 illustrates the proofs that followed. Then from the 

- -  .~ l l t  

Figure 6: Any node z tg D(u)  is not neighbor o f u .  

Delaunay property, we know that the polygon y w u v  
does not contain any mobile nodes inside. Without 
loss of generality, assume that node z is inside the 
wedge , (yuw.  It implies that z E R2(u ,w) .  From 
lemma 4, we know that R2(u,  w) C R , ( u ,  w)  for any 
a _> 2. In other words, we can use node w to relay 
the signal from node u to node z if  the receiver's cost 
c : 0. 3 Therefore, all nodes not in D(u )  can not be 
a neighbor of  u. This completes the proof. [] 

The fact that the Delaunay triangulation is a pla- 
f2~,  0 nar graph implies that the enclosure graph ,--e is a 

planar graph. Thus the number of  edges is at most 
3n if the receiver's cost is negligible. It implies that 
the average number of edges incident to a node u is 
at most 6. Notice that it is possible that the neigh- 
bors of  one specific node could be as large as O(n) .  
Here all wireless nodes except a node u are on a circle 
and within the transmission range of node u. Then we 
have dG, (u) = n -- 1. 

Notice that some Delaunay neighbors D (u) could 
be out of  the transmission range of u. Let DT(U)  
be the Delaunay neighbors D ( u )  that are within the 
transmission range of u. As shown by the previ- 
ous proof, the neighbors N ( u )  must be contained in 
DT(U). Moreover, it is easy to show that DT(U)  is a 
subset of  the nodes connected to u in the Delannay tri- 
angulation of  nodes T ( u ) .  Recently, Li [8] proposed 

3Notice that node z is within the transmission range of  u and 
z is contained in the wedge x 'yuw imply that node w is within 
the transmission range of  u. Thus it is valid to claim that node z 
is in the relay region R(u ,  ~o). 
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a new structure called the local Delaunay triangula- 
tion and showed how to construct it efficiently using 
linear number of  messages. Li et aI. [9, 11] showed 
that the Gabriel graph contains the minimum-power 
topology when c = 0. Here an edge uv  belongs to the 
Gabriel graph if the circle using uv as a diameter does 
not contain any other node inside. 

III.C. W i t h  R e c e i v e r  C o s t  

Finally, we study the basic properties of the structure 
of the minimum-power topology if  the receiver's cost 
is not negligible compared to the transmission cost in- 
curred. 

Lemma 6 Given two nodes s and r, the relay region 
Ral  (s, r) C R~, 2 (s, r )  i f  Ot 1 < Ot 2 and the distance 

II~rll > /1 .  

PROOF. Consider any point x in the relay region 
n ~  1 (s, r) .  From definition 1, we know that II sx I I ~1 > 
libel[ ~1 + IIr~:ll "~ + c. A n d  it is always true that 

I1~11 > I1~,'11 and I1~11 > I1~11. T h e  fact that 
I1~11 ~2 ---- I I ~ l l  ~ • I I ~ l l  ~ 2 - ~  implies that 

I1~11 ~2 > ( l l ~ l l  ~ + I1~11 ~1 + c ) .  I1~11 ~ - ~  

> I I ~ l l ~ l l l ~ l l  ~ - ~  + I I ~ l l ~ l l l ~ l l  ~ 2 - ~  

+ c l l ~ l l  ~ - ~  

> II~rll ~1 • I I~ l l  ~ - ~  + I I ~ l l  ~ • I I ~ l l  ~ = - ~  + c 

- -  I I ~ l l  ~2 + I I ~ l l  ~ + c. 

Therefore point x is also in the relay region R..  2 (s, r )  
by definition. This completes the proof. [] 

The above lemma implies that if  the signal from s 
to a node z can not be relayed by a node r for prop- 
agation constant C~l and 118rll >_ 1, then it can not be 
relayed by r for any propagation constant a2 > a l .  

III.D. C e n t r a l i z e d  A l g o r i t h m  

Let us first consider how to compute the enclosure 
graph G~ using a centralized algorithm. One simple 
approach is as follows. For each pair of  nodes u and 
v, compute the relay region R(u ,  v) and R ( v ,  u).  Then 
use an approach similar to computing the Voronoi di- 
agram, we can compute the enclosure region for each 
node u. And all nodes covered by the enclosure region 
of  u are connected to node u. The time complexity of 
the above approach could be as large as O(na),  where 
n is the number of all mobile nodes. This is apparently 
not practical for ad hoc networking. 

When the receiver's cost c is negligible, we know 
that the minimum-power topology Grn is a subgraph 
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of  the Delaunay triangulation of  all mobile nodes. 
Therefore, we can apply any O ( n  log n)  time com- 
plexity Delaunay triangulation algorithm to compute 
the Delaunay triangulation of  all mobile  nodes. Then 
for each node u, we eliminate the nodes o f  Delaunay 
neighbors D ( u )  that are in the relay region of  other 
nodes f rom D(u) .  The remaining nodes are N~(u) .  
Notice that the average Delaunay neighbors D(u)  is 
at most  6 implies that the average time complexi ty to 
compute N ( u )  f rom D(u)  is constant. Therefore, the 
average time complexi ty  o f  the above algorithm using 
the Delaunay triangulation to compute the enclosure 
graph is O ( n  log n)  i f  the receiver's cost c = 0. 

We then consider how to compute the shortest path 
between the source node s and the destination node 
t, given the enclosure graph Ge. One approach is to 
apply the Dijkstra's algorithm to compute  the path be- 
tween s and t with the min imum power consumption.  
The t ime complexi ty will be O ( n l o g n  q- m)  i f  the 
algorithm is implemented using the Fibonacci heap, 
where m is the number  of  edges of  G~. When  c = 0, 
we already show that the graph Ge is a subgraph of  
the Delannay triangulation o f  all mobile nodes. Thus, 
we can use the algorithm by Klein, Ran, Rauch and 
Subramanian [5] to compute the shortest path in lin- 
ear time. 

Theorem 7 The minimum power  path between any 
two mobile nodes can be computed in O ( n  l o g n )  time 
using a centralized algorithm i f  c : O. 

IV. D i s t r i b u t e d  A l g o r i t h m s  

In this section, we describe a distributed algori thm 
that finds the min imum-power  topology for a set o f  
stationary nodes. In our protocol, each node only has 
to consider asymptotical ly a constant number  o f  nodes 
to construct the global m in imum power paths. Before 
presenting our algorithm, let 's first review the algo- 
r i thm proposed by Rodoplu and Meng [18]. 

I V ~  P r e v i o u s  A l g o r i t h m  

The algorithm proposed in [18] has two phases. The 
first phase of  the algori thm searches the enclosure o f  
each node by using the relay graph. The second phase 
o f  the algori thm finds the optimal links on the enclo- 
sure graph by applying the distributed Bel lman-Ford 
algorithm_ The cost metric is the power consumption 
which includes the transmission power cost and the 
receiver's power cost. Notice that it is proved that the 
enclosure graph contains the min imum power topol- 
ogy. When  searching for neighbors using their algo- 
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rithm, a node u must  keep track of  whether a node 
just  found is in the relay region of  previously found 
nodes. Let  T ( u )  be all nodes found by a node u so 
far. Node u stores a relay graph defined as follows. 
Whenever  a node v E T ( u )  is in the relay region of  a 
node zo E T (u ) ,  it forms a directed edge (w, v). Then 
the relay graph of  a node u is defined as the directed 
graph with all such edges on all vertices T ( u ) .  It is 
easy to show that there is no directed cycle in the re- 
lay graph by the relay properties. 

As described in [18], a new found node v by the 
node u is marked alive i f  it is not in the relay region 
of  any previous found node by u. Otherwise, assume 
that the node v is in the relay region of  a previously 
found node w, then they say that node w blocks node 
v. And  the new found node v is marked dead. I f  node 
v blocks a previously marked alive node w, node w is 
also marked dead. When  a previously alive node w is 
marked dead, it is possible that some node z blocked 
by w is not blocked by any other alive nodes. In other 
words, node z should be an alive node. They [18] 
then use an operation to revive all such nodes z that 
are previously marked dead. Consequently,  their al- 
gorithm finds the largest subset o f  nodes such that any 
node in the subset is not blocked by any other node in 
the subset. 

Even the basic idea of  their algorithm is correct, 
their algorithm is, however, not t ime efficient and uses 
too much storage. The reason are as follows. First it 
is not space efficient and t ime efficient to use the re- 
lay graph to compute  the neighbors. The relay graph 
could be very large compared to the actual number  
o f  neighbors (which is a constant in average when 
c = 0). Second, the unnecessary revive operations 
also waste time. Notice that we had shown that any 
node w lying in the relay region R ( s ,  r)  can not be a 
neighbor o f  s. In next, we present a new algorithm, 
which is time efficient and uses only a small amount  
of  storage. 

IV.B. O u r  A l g o r i t h m s  

I~ .B.1 .  N e g l e c t  t h e  r e c e i v e r ' s  c o s t  

We first consider the case when the receiver's cost 
could be neglected. Consider  a node u in the transmis- 
sion graph Gt. Remember  that da~ (u) is the number  
o f  discovered nearby nodes of  u. We showed that the 
neighbors N ( u )  is a subset of  the Delannay neighbors 
D(u)  i f  c = 0. The Delaunay neighbors D(u)  can 
also be computed efficiently by using the Voronoi dia- 
gram. In other words, instead of  comput ing the Delau- 
nay neighbors D (u), we compute  the Voronoi region 
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of node u. 
For any node v in T(u),  let v' be the midpoint of 

the line uv. We call v t the image of v. We will use 
such image point v' to compute the Voronoi region 
of  u. Let lv, be the line that passes point v' and is 
perpendicular to the segment uv'. Let h,,, be the half 
plane defined by line lv, containing the node u. See 
Figure 7 for an illustration. Then the Voronoi diagram ! w 

-6  . . . . . .  -" - - ' "  . . . .  
x w 

- / -  -..& 
i V s  

V , U i 
i 

Figure 7: The Voronoi region of a local node u. 

V(u) of a node u is 

nveT(u) hv' . 

Assume a node v defines a segment pq in the Voronoi 
region of  u. Then it is easy to show that points p and q 
can be computed in O(da~ (u)) time by computing the 
• intersection points of  line l~, with all other half planes 
h~,, defined by other nodes w. 

Notice that the nearest neighbor node v of  u al- 
ways defines a segment, say qoql, in the Voronoi 
cell of V(u).  The segment qoql can be computed in 
O(dG~ (u)) time. Assume point ql is the intersection 
of the line l~, and l,,,. Then we know that line l~, 
also defines a segment, say qlq2 in the Voronoi cell 
of V(u) ,  which can also be computed in O(da,(u))  
time. The following Figure 8 illustrates the above 
proofs. Then we can repeat the above procedure until 

,v, txi' W" 

I w' 
____--- 

yO 

Figure 8: Comptuing the Voronoi region of  a local 
node u. 

the Voronoi region of u is computed. 

L e m m a  8 The Voronoi cell of  a node u can be com- 
puted in O(dG,(u)da~ (u)) time by node u where 
de, (u) is the number of nodes known by u, dGo (u) 
is the number of segments of the Voronoi cell of  u. 

Notice that N(u)  C D(u)  when the receiver's cost 
could be neglected. Using the duality of  the Delau- 
nay triangulation and the Voronoi region, the above 
procedure also implies that D(u)  can be computed by 
u in O(dGt(u)da, (u)) time. Typically the average 
number of  Delaunay neighbors of node u is at most 
6. Thus N(u)  can be quickly computed from D(u).  
Notice that when dG~ (u) is larger than log dG~(U), 
we can apply the Delannay triangulation algorithm 
to compute the Delaunay triangulation of all nodes 
within the transmission range of node u. Then extract 
the Delaunay neighbors of  node u in O(dG~ (u)) time. 
Therefore the total time complexity of  this approach 
is O(dG~ (u)log dG~ (u)). Notice that there is no need 
to compute the enclosure graph from the Delaunay 
triangulation because the Delaunay triangulation and 
the minimum power topology both have O(n) edges. 
This implies the following lemma. 

L e m m a  9 When the receiver's cost 
c = O, we can find N(u )  in 
O(min(dG,(u)D(u),dG,(u)logdG~(U))) time, 
where D(u)  is the number of  Delaunay neighbors of 

Although Li et al. [9, 11 ] recently showed that 
Gabriel graph always contains the minimum-power 
topology, which can be constructed efficiently in a 
localized manner, we think that constructing the lo- 
calized Voronoi diagram efficiently itself is worth of  
study. Moreover, this method can be used to find an 
approximation of  the minimum-power topology when 
c ~ 0. Notice that, the general structure of the 
minimum-power topology for c ¢ 0 is still unknown. 

I V : B . 2 .  T h e  c o n s t a n t  c~ = 2 

Notice that the above procedure to compute the 
Voronoi diagram of a node u can also be used to com- 
pute the neighbors N(u)  of node u when ~ = 2 and 
c > 0. We already showed that the boundary of 
R ( u , v )  is a line when ~ = 2. Thus, the relay re- 
gion of a node is the intersection of some half planes. 
Instead of  defining v' as the midpoint of segment uv, 
we define v' as the intersection point of the line uv 
and the boundary of  the relay region R(u,  v). Then 
similarly, we know that the neighbors N(u)  of a node 
u can be computed in O(da~(u)da~ (u)) time if  the 
propagation constant c~ = 2. Figure 9 illustrates the 
definition of function ' 

When the number of neighbors of  u is more than 
log dat (u), we also use the Delaunay triangulation to 
find the neighbors as follows. For each node v, it is 
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Figure 9: The modified Voronoi region of  a local node 
u when alpha = 2. 

mapped to a point v I as the intersection point o f  line 
uv and the boundary of  R ( u ,  v). Define point v" such 
that v ~ is the midpoint  o f  segment  uv F. Then compute  
the Delaunay triangulation X of  the point  set {v" I v E 
T (u)} U {u}. The neighbors o f  node u in the Delaunay 
triangulation X is then N(~z). This procedure has time 
complex i tyO(dc ,  (u) log d r ,  (u)).  Consequently,  the 
fol lowing lemma is straightforward. 

Lemma 10 The neighbors N (u) 
of  node u can be computed in 
O(min(dG, (u)dG~ (u), dGt (u) log dct (u))) time 
if the propagation constant t~ = 2. 

I ~ . B . 3 .  G e n e r a l  C a s e s  

Notice that the approach used to compute the Voronoi 
region can also be used to compute the enclosure re- 
gion of  a node u generally but the definition o f  the 
bisector is different. For general t~ and constant c, 
the bisector is the boundary of  relay region _R(u, v). 
The t ime complexi ty to compute the enclosure region 
E(u)  is O(dGt (u)dG~ (u)). However, actually it could 
be expensive. The most  expensive operation will be 
computing the intersection point of  the boundaries o f  
two relay regions. Instead, we propose to use the fol- 
lowing method. For  each node u, its nearest neighbor 
is always in N(u) .  Here a node v is the nearest neigh- 
bor of  u if  v is the closest node to u geometrical ly 
besides u itself. Remember  that T(u)  is the set o f  all 
nodes that are within the transmission range of  node 
"/~. 

A l g o r i t h m  1 Min-Power Topology(u) 

1. N ' (u)  = ¢; Q = T(u) .  

2. while (Q ~ ¢) { 

3. Let  v E Q be the nearest node to u; 

4. Nl (u)  = N ' (u )  U {v}; 
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5. Eliminate all nodes x f rom Q such that 

Ilu.ll + IIwll  > Ilu ll + c; } 

Notice that the computed result Nl(u)  is guaran- 
teed to contain N(u) .  If  the computed set N' (u )  is 
still large, we can apply the above method on Nl(u)  
to refine the solution. Here Q is the set of  all possi- 
ble neighbor nodes within the transmission range of  u. 
We find the nearest neighbor node v of  u f rom Q and 
add it to N(u) .  By the definition of  the enclosure re- 
gion and the neighbors, we know that all nodes f rom 
Q fq R ( u ,  v) could not be the neighbors o f  u. Then 
we can eliminate them first. The above procedure is 
repeated until Q is empty. Notice that each node will  
be el iminated once or put into N '  (u). Thus the main 
complexi ty  comes f rom searching the nearest node of  
u f rom Q. It is easy to show that the t ime complexi ty 
of  the above algorithm is O(dGt (u) log dGt (u)),  i f  we 
sort the distance o f  all nodes f rom T(u)  to (z. 

It is not difficult to show that the above method  (Al- 
gori thm 1) actually computes the one-hop relay neigh- 
bors. The one-hop relay neighbors of  a node z is the 
set of  all nodes v such that path avd is more power  
efficient than path zd  for some node d. Recently, Li et 
al. [7] proposed to consider all k-hop paths. A node 
v is a neighbor of  a node s i f  there is no a path with 
k-hops such that it consumes less power than edge sv. 

After  the network topology is constructed, we as- 
sign the cost of  each link (u ,v)  as Iluvll + c and 
store the cost at node u. Then, given a master-site s, 
we can use the distributed Bel lman-ford algori thm to 
find the shortest path tree rooted at s. However, as 
the dynamic nature of  the mobile  wireless network, 
we argue that it is not necessary to compute the tree 
and store the structure at each node. The reasons are 
as follows. First the shortest path tree is computed 
for the master-site. It is not on-demand for any other 
node. Second, typically, the traffic is often unicast 
f rom one node to the other node. So it wastes the re- 
sources to compute  the shortest path tree which is not 
required even the sender is the master-site. Third, be- 
cause o f  the dynamic  moving of  the mobile nodes, the 
shortest path tree is often out-dated after some short 
time period. Therefore, our algorithm mainly  concen- 
trate on building the networking topology such that it 
contains the shortest paths from any node to any other 
node. Each traffic session initiate the on-demand rout- 
ing protocol f rom the source to the destination. For  
more on-demand routing, see [4, 12, 15, 17]. We also 
can use the compass routing [1, 6] or Voronoi region 
based routing [21] to route the packet f rom a node s 
to a node t using this enclosure graph. Notice that the 
compass routing and the Voronoi region based routing 
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can not guarantee that the computed route consumes 

the minimum energy. However, it is much faster than 
the optimal Bellman-ford algorithm. 

l~.B.4. Se t t ing  the Search  Region 

Notice that in the algorithm proposed by Rodoplu and 
Meng [18], it is not specified when to stop exploring 
new nodes that could be the neighbors of  a node u. 
They recongnized that it is challenging to find such 
search region such that the energy consumption un- 
til the algorithm terminates is minimized. By using 
our localized approach, we have a simple criteria for 
stopping exploring new nodes. We find new nodes us- 
ing the following sequences of  transmission powers p, 
2p, 4p, • • •, 2ip, - - -. Here p is a predefined constant 
transmission power. We stop transmitting using power 
2ip if  the enclosure region computed by using nodes 
found so far is in the circle centered at u with radius 
(2~-1p). Let  B ( u ,  r )  be the disk centered at u with 
radius r .  Le t /~ r  (u) be the enclosure region o f  node u 
computed using all nodes within disk B(u ,  r). Then 
the following lemma supports our algorithm. 

L e m m a 1 1  I f  E~(u) is inside disk B(u , r ) ,  then 
E~(u) is the enclosure region E(u)  of u. 

PROOF. Consider any node w that is not inside 
B ( u ,  r ) .  For any point x in the relay region R(u ,  w), 

we have I1  11 > I1  oll > r. It then implies that 
the intersection of  R(u ,  w) and Er (u) is empty. Then 
node w can not affect the enclosure region E ( u ) .  [] 

Then the total power used by the above approach is 
~'-~---~ 2Jp = (2' -- 1)p. And the optimum protocol 

will use the power between 2i-2p and 2i-lp,  assum- 

ing that the protocol can guess correctly the optimum 
transmission range. Then the power consumed by our 

protocol is within ~ < 4 times of  the optimum 2~-zp 
power consumed. Then we have the following theo- 
rem. 

T h e o r e m  12 The power consumed by the above dou- 
bling approach to find the region that contains all in- 
formation necessary for computing the neighbors of a 
node u is less than 4 times of the optimal power con- 
sumption. 

Notice that we did not consider the receiver's power 
cost in above proof. For example, for a node v lo- 
cated within the transmission power  range 2Jp but n o t  

within the transmission power range 2 J - l p ,  it receives 
21-i 

the signal from node u l o g ~  = i - - j  times. In other 
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words, the receiving cost of  that node v is (i - j )  • c 

if  node v receives the signal whenever u sends signal. 
Notice that if  there are lots o f  mobile nodes located 
within the transmission range 2ip but not T - l p ,  then 
the receiving cost could be very large compared to 
the optimum. However, if the mobile nodes are well- 
spaced [22], it is not difficult to show that the total 
receiving cost o f  all nodes at T(u)  is within a small 
constant factor of  the optimum cost. 

I • 
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Figure 10: Finding the search region. 

V. D y n a m i c  D i s t r i b u t e d  N e t w o r k s  

For mobile wireless networks, since every node often 
moves over the time, the networking protocol must be 
able to dynamically update its links in order to main- 
tain the strong connectivity o f  the network. All our 
discussions had been concentrated on the stationary 
network, in which all nodes are assumed to be static 
and work perfectly. In other words, no new node is 
added into the network, nor any node will go out of  
work. In this section, we consider the case that the 
network is dynamically changing. Notice that a node 
moves from one position to the other position can be 

viewed as two events: one node is deactivated at the 
old position and one node is activated at the new po- 
sition. Therefore, in the following, we only consider 
how to add a new node to the network and how to re- 
move one node from the network. 

First let's consider how to add a new node into the 
network. Notice that, for each node u, we only use 
the nodes from N(u)  to relay the signal sent f rom 
u if necessary. Assume that node z is added to the 
network. It is easy to show that only some node u 
whose enclosure region E ( u )  contains z need to be 
updated. To update the networking topology, the new 
node z broadcasts its position information to nearby 

nodes. Each node u that received the message checks 
whether the node z is contained in its enclosure re- 
gions. Assume that node u also stores a set of  nodes 
that defines the enclosure region E ( u ) .  Node u checks 
if  there is a node v defining E ( u )  such that z is inside 
R(~z, v). If  such node v exists, then the neighbor set 
N ( u )  does not need to be updated. Otherwise, re- 
move all nodes v E N ( u )  such that v is in R(u ,  z). It 
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is easy to show that the above procedure can be done 
in O ( N ( u ) )  time. Obviously, we can update the en- 
closure region E ( u )  in O ( I E ( u  ) I) time, where IE(~)l  
is the number  o f  nodes defining it. 

Then we consider how to remove a node f rom the 
network. Obviously, a removed node z affects the 
neighbors of  a node u when z E N ( u ) .  However, 
when node z defines a curve in E ( u ) ,  then the removal 
of  node z will affect the enclosure region E(zL). Con- 
sequenfly, it may  introduce some new neighbors to the 
node u. Therefore, we first check if  z belongs to the 
set o f  nodes defining E ( u ) .  I f  it does, we have to 
revive the nodes blocked by z only and add them to 
N ( u ) .  The set o f  nodes defining E(~z) is also updated 
correspondingly. The above procedure can be done 
in O(da ,  (~z)5(u)) time, where 5(u) is the number  o f  
new neighbors introduced. The updating of  the new 
neighbors is similar to finding all neighbors. 

The main advantage of  our algorithm over the algo- 
ri thm proposed in [18] is as following. The algorithm 
proposed in [18] tries to recompute all neighbors in- 
formation after a node wakes up. It is too expensive 
to do so. On the other hand, our algorithm tries to use 
as much  previous information as possible. The node 
only needs to update the neighbors information only 
if  some nearby nodes moved during its sleep time. 

VI.  C o n c l u s i o n  

We have described a distributed protocol to find 
an enclosure graph that approximates the min imum- 
power  topology for a stationary wireless ad hoc 
network. Assume a node u has found dG~(u) 
nodes within its transmission range. We pro- 

posed a O ( m i n ( d a ,  (u)da~ (u), dGt (u) log dat (u) ) ) 
t ime complexi ty  algorithm to compute the neighbors 
o f  u, where da~ (u) is the number  of  neighbors of  node 
u. We also show how to updating the topology when 
the network is dynamical ly  changing. 

After  the min imum-power  topology is constructed, 
the Bel lman-ford algorithm can then be applied to 
compute the shortest path between any two nodes. 
However, the distributed Bel lman-ford algorithm may  
be too slow to compute  to the shortest path. It is 
worthwhile  to develope an algori thm which can di- 
rectly find the shortest path or find the path whose 
length is within a constant factor o f  the shortest path. 
Here the length of  a path is the energy consumed by 
this path. The routing must  be truly local. In other 
words, it only uses the destination location informa- 
tion and the current node information such as its loca- 
tion and its neighbors. 
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