2 research outputs found

    Algoritma Subbahagian Dalam Cagd

    Get PDF
    CAGD adalah singkatan untuk "Computer Aided Geometric Design" atau di dalam Bahasa Melayu ialah Rekabentuk Geometri Bantuan Komputer iaitu RGBK. Membina dan mengawal lengkung menjadi keutamaan di dalam rekabentuk berbantukan komputero Teknik pe~anaan lengkung dan permukaan menggunakan polinomial Bernstein dalam CAGD ini mula diperkenalkan oleh Paul de Casteljau dan Pierre Benero Projek ini membincangkan dua algoritma subbahagian yang digunakan dalam proses untuk menghasilkan lengkung dan permukaan iaitu algoritma de Casteljau dan algoritma Chaikin. Algoritma de Casteljau menghasilkan lengkung dengan carn menginterpolasi titik kawalan pertama dan titik kawalan terakhir manakala algoritma Chaikin menjana lengkung dengan cara memotong setiap penjuru poligon kawalan asalo Lengkung dan permukaan Bezier kini digunakan secara meluas sebagai asas matematik dalam sistem CAD dan menjadi alat utama dalam perkembangan kaedah-kaedah bam untuk keperluan lengkung dan permukaan dalam CAD, CAGD is the abbreviation for the Computer Aided Geometric Design or in Malay Language, it is called "Rekabentuk Geometri Bantuan Komputer" or RGBKo Generating and controlling curves are important in computer aided designo The techniques for generating the curves and surfaces in CAGD were developed by Paul de Casteljau and Pierre Beziero This project will discuss about 2 subdivision algorithms used in the process of generating curves and surfaces, that are de Casteljau algorithm and Chaikin algorithm.o De Casteljau algorithm generates curves by interpolating the fIrst control point and last control point Chaikin algorithm generates curves by cutting every comer of original control polygono The Bezier curves and surfaces nowadays are established as the mathematical basis of many CAD systems and have fonned a major tool for the development of new methods for curves and surfaces description

    Solving One-Predator Two-Prey System by using Adomian Decomposition Method / Wan Khairiyah Hulaini Wan Ramli... [et. al]

    Get PDF
    In this paper, a mathematical model of one-predator two-prey system is discussed. This model is derived from predator-prey Lotka-Volterra model by adding another population of prey into the system. The model derived is a nonlinear system of ODEs. So the approach to this model is different from the linear system of ODEs. With reference to that, Adomian Decomposition Method (ADM) is one of the semi-analytical approaches being applied in this paper to solve the system. The approximate solution is made until four terms. The solution obtained is analyzed graphically
    corecore