2 research outputs found
Algoritma Subbahagian Dalam Cagd
CAGD adalah singkatan untuk "Computer Aided Geometric Design" atau di
dalam Bahasa Melayu ialah Rekabentuk Geometri Bantuan Komputer iaitu RGBK.
Membina dan mengawal lengkung menjadi keutamaan di dalam rekabentuk
berbantukan komputero Teknik pe~anaan lengkung dan permukaan menggunakan
polinomial Bernstein dalam CAGD ini mula diperkenalkan oleh Paul de Casteljau
dan Pierre Benero Projek ini membincangkan dua algoritma subbahagian yang
digunakan dalam proses untuk menghasilkan lengkung dan permukaan iaitu
algoritma de Casteljau dan algoritma Chaikin. Algoritma de Casteljau menghasilkan
lengkung dengan carn menginterpolasi titik kawalan pertama dan titik kawalan
terakhir manakala algoritma Chaikin menjana lengkung dengan cara memotong
setiap penjuru poligon kawalan asalo Lengkung dan permukaan Bezier kini
digunakan secara meluas sebagai asas matematik dalam sistem CAD dan menjadi
alat utama dalam perkembangan kaedah-kaedah bam untuk keperluan lengkung dan
permukaan dalam CAD,
CAGD is the abbreviation for the Computer Aided Geometric Design or in
Malay Language, it is called "Rekabentuk Geometri Bantuan Komputer" or RGBKo
Generating and controlling curves are important in computer aided designo The
techniques for generating the curves and surfaces in CAGD were developed by Paul
de Casteljau and Pierre Beziero This project will discuss about 2 subdivision
algorithms used in the process of generating curves and surfaces, that are de
Casteljau algorithm and Chaikin algorithm.o De Casteljau algorithm generates curves
by interpolating the fIrst control point and last control point Chaikin algorithm
generates curves by cutting every comer of original control polygono The Bezier
curves and surfaces nowadays are established as the mathematical basis of many
CAD systems and have fonned a major tool for the development of new methods for
curves and surfaces description
Solving One-Predator Two-Prey System by using Adomian Decomposition Method / Wan Khairiyah Hulaini Wan Ramli... [et. al]
In this paper, a mathematical model of one-predator two-prey system is discussed. This model is derived from predator-prey Lotka-Volterra model by adding another population of prey into the system. The model derived is a nonlinear system of ODEs. So the approach to this model is different from the linear system of ODEs. With reference to that, Adomian Decomposition Method (ADM) is one of the semi-analytical approaches being applied in this paper to solve the system. The approximate solution is made until four terms. The solution obtained is analyzed graphically