17,236 research outputs found

    Precision isotope shift measurements in Ca+^+ using highly sensitive detection schemes

    Get PDF
    We demonstrate an efficient high-precision optical spectroscopy technique for single trapped ions with non-closed transitions. In a double-shelving technique, the absorption of a single photon is first amplified to several phonons of a normal motional mode shared with a co-trapped cooling ion of a different species, before being further amplified to thousands of fluorescence photons emitted by the cooling ion using the standard electron shelving technique. We employ this extension of the photon recoil spectroscopy technique to perform the first high precision absolute frequency measurement of the 2^{2}D3/2_{3/2} \rightarrow 2^{2}P1/2_{1/2} transition in 40^{40}Ca+^{+}, resulting in a transition frequency of f=346000234867(96)f=346\, 000\, 234\, 867(96) kHz. Furthermore, we determine the isotope shift of this transition and the 2^{2}S1/2_{1/2} \rightarrow 2^{2}P1/2_{1/2} transition for 42^{42}Ca+^{+}, 44^{44}Ca+^{+} and 48^{48}Ca+^{+} ions relative to 40^{40}Ca+^{+} with an accuracy below 100 kHz. Improved field and mass shift constants of these transitions as well as changes in mean square nuclear charge radii are extracted from this high resolution data

    Energy transfer, pressure tensor and heating of kinetic plasma

    Full text link
    Kinetic plasma turbulence cascade spans multiple scales ranging from macroscopic fluid flow to sub-electron scales. Mechanisms that dissipate large scale energy, terminate the inertial range cascade and convert kinetic energy into heat are hotly debated. Here we revisit these puzzles using fully kinetic simulation. By performing scale-dependent spatial filtering on the Vlasov equation, we extract information at prescribed scales and introduce several energy transfer functions. This approach allows highly inhomogeneous energy cascade to be quantified as it proceeds down to kinetic scales. The pressure work, (P)u-\left( \boldsymbol{P} \cdot \nabla \right) \cdot \boldsymbol{u}, can trigger a channel of the energy conversion between fluid flow and random motions, which is a collision-free generalization of the viscous dissipation in collisional fluid. Both the energy transfer and the pressure work are strongly correlated with velocity gradients.Comment: 28 pages, 10 figure

    Probabilistic teleportation and entanglement matching

    Get PDF
    Teleportation may be taken as sending and extracting quantum information through quantum channels. In this report, it is shown that to get the maximal probability of exact teleportation through partially entangled quantum channels, the sender (Alice) need only to operate a measurement which satisfy an ``entanglement matching'' to this channel. An optimal strategy is also provided for the receiver (Bob) to extract the quantum information by adopting general evolutions.Comment: 3.5 pages, No figure

    L-functions of Symmetric Products of the Kloosterman Sheaf over Z

    Full text link
    The classical nn-variable Kloosterman sums over the finite field Fp{\bf F}_p give rise to a lisse Qˉl\bar {\bf Q}_l-sheaf Kln+1{\rm Kl}_{n+1} on Gm,Fp=PFp1{0,}{\bf G}_{m, {\bf F}_p}={\bf P}^1_{{\bf F}_p}-\{0,\infty\}, which we call the Kloosterman sheaf. Let Lp(Gm,Fp,SymkKln+1,s)L_p({\bf G}_{m,{\bf F}_p}, {\rm Sym}^k{\rm Kl}_{n+1}, s) be the LL-function of the kk-fold symmetric product of Kln+1{\rm Kl}_{n+1}. We construct an explicit virtual scheme XX of finite type over SpecZ{\rm Spec} {\bf Z} such that the pp-Euler factor of the zeta function of XX coincides with Lp(Gm,Fp,SymkKln+1,s)L_p({\bf G}_{m,{\bf F}_p}, {\rm Sym}^k{\rm Kl}_{n+1}, s). We also prove similar results for kKln+1\otimes^k {\rm Kl}_{n+1} and kKln+1\bigwedge^k {\rm Kl}_{n+1}.Comment: 16 page

    Disorder and interaction induced pairing in the addition spectra of quantum dots

    Full text link
    We have investigated numerically the electron addition spectra in quantum dots containing a small number (N < 11) of interacting electrons, in presence of strong disorder. For a short-range Coulomb repulsion, we find regimes in which two successive electrons enter the dot at very close values of the chemical potential. In the strongly correlated regime these close additions, or pairing, are associated with electrons tunneling into distinct electron puddles within the dot. We discuss the tunneling rates at pairing, and we argue that our results are related to a phenomenon known as "bunching", recently observed experimentally.Comment: 4 pages, 5 figure

    Effect of the beam-beam interactions on the dynamic aperture of the LHC at collision

    Get PDF
    The dynamic aperture of the LHC at collision energy is limited by the field errors in the IR quadrupoles being built at FNAL and KEK. The 300 mu rad crossing angle, incorporated in the design to reduce the effect of the long-range beam beam interactions, enhances the effect of the multipoles on the dynamic aperture. We have investigated the possibility of a different crossing angle with a more accurate modelling of the long-range interactions. Tune scans have been done to determine if a better choice of the tunes exists. (7 refs)

    Fluctuation of Conductance Peak Spacings in Large Semiconductor Quantum Dots

    Full text link
    Fluctuation of Coulomb blockade peak spacings in large two-dimensional semiconductor quantum dots are studied within a model based on the electrostatics of several electron islands among which there are random inductive and capacitive couplings. Each island can accommodate electrons on quantum orbitals whose energies depend also on an external magnetic field. In contrast with a single island quantum dot, where the spacing distribution is close to Gaussian, here the distribution has a peak at small spacing value. The fluctuations are mainly due to charging effects. The model can explain the occasional occurrence of couples or even triples of closely spaced Coulomb blockade peaks, as well as the qualitative behavior of peak positions with the applied magnetic field.Comment: 13 pages, 4 figures, accepted for publication in PR
    corecore