3 research outputs found

    Observation of tumour-induced reorganization in structural and functional architecture of the brain in three pre-surgical patients with left frontal-temporal brain tumour: a combination of MEG, DTI and neuropsychological assessment

    Get PDF
    Visual function is mainly located within the bilateral hemisphere of the occipital lobes of the brain. However, our functional magnetoencephalography (MEG) result has demonstrated the reorganization of brain activity in the occipital area in patients with left-sided brain tumour. The results showed that brain laterality changes from bilateral to unilateral activation of the occipital area. Right occipital area (contralateral areas to the tumour), shows increase intensity of activation. Diffusion tensor imaging (DTI) with fibre tracking was performed to further investigate this brain laterality modification and the findings confirmed there is an alteration in the left hemisphere fibre optic tracts. This functional modification and changes of the brain laterality and optic tracts in the brain is suspected to be the result of tumour growth induced changes. The present observation will be discussed in term of the mechanism of tumour induced reorganization and changes with the corroborating evidence from MEG, DTI and neuropsychological assessment

    Alteration in the functional organization of the default mode network following closed non-severe traumatic brain injury

    Get PDF
    The debilitating effect of traumatic brain injury (TBI) extends years after the initial injury and hampers the recovery process and quality of life. In this study, we explore the functional reorganization of the default mode network (DMN) of those affected with non-severe TBI. Traumatic brain injury (TBI) is a wide-spectrum disease that has heterogeneous effects on its victims and impacts everyday functioning. The functional disruption of the default mode network (DMN) after TBI has been established, but its link to causal effective connectivity remains to be explored. This study investigated the differences in the DMN between healthy participants and mild and moderate TBI, in terms of functional and effective connectivity using resting-state functional magnetic resonance imaging (fMRI). Nineteen non-severe TBI (mean age 30.84 ยฑ 14.56) and twenty-two healthy (HC; mean age 27.23 ยฑ 6.32) participants were recruited for this study. Resting-state fMRI data were obtained at the subacute phase (mean days 40.63 ยฑ 10.14) and analyzed for functional activation and connectivity, independent component analysis, and effective connectivity within and between the DMN. Neuropsychological tests were also performed to assess the cognitive and memory domains. Compared to the HC, the TBI group exhibited lower activation in the thalamus, as well as significant functional hypoconnectivity between DMN and LN. Within the DMN nodes, decreased activations were detected in the left inferior parietal lobule, precuneus, and right superior frontal gyrus. Altered effective connectivities were also observed in the TBI group and were linked to the diminished activation in the left parietal region and precuneus. With regard to intra-DMN connectivity within the TBI group, positive correlations were found in verbal and visual memory with the language network, while a negative correlation was found in the cognitive domain with the visual network. Our results suggested that aberrant activities and functional connectivities within the DMN and with other RSNs were accompanied by the altered effective connectivities in the TBI group. These alterations were associated with impaired cognitive and memory domains in the TBI group, in particular within the language domain. These findings may provide insight for future TBI observational and interventional research

    Neural alterations in working memory of mild-moderate TBI: an fMRI study in Malaysia

    No full text
    Working memory (WM) encompasses crucial cognitive processes or abilities to retain and manipulate temporary information for immediate execution of complex cognitive tasks in daily functioning such as reasoning and decision-making. The WM of individuals sustaining traumatic brain injury (TBI) was commonly compromised, especially in the domain of WM. The current study investigated the brain responses of WM in a group of participants with mild-moderate TBI compared to their healthy counterparts employing functional magnetic resonance imaging. All consented participants (healthy: n = 26 and TBI: n = 15) performed two variations of the n-back WM task with four load conditions (0-, 1-, 2-, and 3-back). The respective within-group effects showed a right hemisphere-dominance activation and slower reaction in performance for the TBI group. Random-effects analysis revealed activation difference between the two groups in the right occipital lobe in the guided n-back with cues, and in the bilateral occipital lobe, superior parietal region, and cingulate cortices in the n-back without cues. The left middle frontal gyrus was implicated in the load-dependent processing of WM in both groups. Further group analysis identified that the notable activation changes in the frontal gyri and anterior cingulate cortex are according to low and high loads. Though relatively smaller in scale, this study was eminent as it clarified the neural alterations in WM in the mild-moderate TBI group compared to healthy controls. It confirmed the robustness of the phenomenon in TBI with the reproducibility of the results in a heterogeneous non-Western sample
    corecore