24 research outputs found

    Development of microspheres for biomedical applications: a review

    Get PDF
    An overview of microspheres manufactured for use in biomedical applications based on recent literature is presented in this review. Different types of glasses (i.e. silicate, borate, and phosphates), ceramics and polymer-based microspheres (both natural and synthetic) in the form of porous , non-porous and hollow structures that are either already in use or are currently being investigated within the biomedical area are discussed. The advantages of using microspheres in applications such as drug delivery, bone tissue engineering and regeneration, absorption and desorption of substances, kinetic release of the loaded drug components are also presented. This review also reports on the preparation and characterisation methodologies used for the manufacture of these microspheres. Finally, a brief summary of the existing challenges associated with processing these microspheres which requires further research and development are presented

    The Manufacture of Low-Dose Oral Solid Dosage Form to Support Early Clinical Studies Using an Automated Micro-Filing System

    No full text
    Automated powder dispensing systems enable supplying early clinical studies using drug-in-capsule approach, which is material sparing and requires a minimum amount of resources. However, the inability of accurately filling the capsule with a small amount, e.g., several micrograms, of drug limits the use of these systems for potent drugs. We demonstrate that formulated powder blends can be used to successfully fill capsules containing 5 μg to 5 mg of drug with adequate content uniformity. Effective formulation and process strategies that enable this approach are presented with examples

    Chitosan and sodium alginate—Based bioadhesive vaginal tablets

    No full text
    Metronidazole was formulated in mucoadhesive vaginal tablets by directly compressing the natural cationic polymer chitosan, loosely cross-linked with glutaraldehyde, together with sodium alginate with or ine cellulose (MCC). Sodium carboxymethylcellulose (CMC) was added to some of the formulations. The drug content in tablets was 20%. Drug dissolution rate studies from tablets were carried out in buffer pH 4.8 and distilled water. Swelling indices and adhesion forces were also measured for all formulations. The formula (FIII) containing 6% chitosan, 24% sodium alginate, 30% sodium CMC, and 20% MCC showed adequate release properties in both media and gave lower values of swelling index compared with the other examined formulations. FIII also proved to have good adhesion properties with minimum applied weights. Moreover, its release properties (% dissolution efficiency, DE) in buffer pH 4.8, as well as release mechanism (n values), were negligibly affected by aging. Thus, this formula may be considered a good candidate for vaginal mucoadhesive dosage forms
    corecore