6,998 research outputs found

    Human Rights and International Trade: How does the Trade System Violate Human Rights under the COVID-19 Pandemic?

    Get PDF
    Under COVID-19, the free trade system, especially the global intellectual property regime, is violating human rights in new ways. In the current fragmented state of international health law and human rights law, intellectual property law under the global trading system is commoditizing COVID-19 vaccines and other essential medicines, prioritizing commercial interests and patent protection over human rights. Although the international human rights system has issued a number of resolutions and reports on this issue, and many international and national organizations have also introduced mechanisms similar to the COVAX plan, the situation of "vaccine apartheid" and the marginalization of the interests of people in poor areas still exists. Therefore, this paper proposes some initial recommendations for better safeguarding of human rights during the COVID-19 outbreak, such as strengthening international cooperation or highlighting the human rights responsibilities of non-state actors, including multinational corporations and NGOs

    The rare semi-leptonic BcB_c decays involving orbitally excited final mesons

    Full text link
    The rare processes BcD(s)J()μμˉB_c\to D_{(s)J} ^{(*)}\mu\bar{\mu}, where D(s)J()D_{(s)J}^{(*)} stands for the final meson Ds0(2317)D_{s0}^*(2317), Ds1(2460,2536)D_{s1}(2460,2536),~Ds2(2573)D_{s2}^*(2573), D0(2400)D_0^*(2400), D1(2420,2430)D_{1}(2420,2430) or~D2(2460)D_{2}^*(2460), are studied within the Standard Model. The hadronic matrix elements are evaluated in the Bethe-Salpeter approach and furthermore a discussion on the gauge-invariant condition of the annihilation hadronic currents is presented. Considering the penguin, box, annihilation, color-favored cascade and color-suppressed cascade contributions, the observables dBr/dQ2\text{d}Br/\text{d}Q^2, ALPLA_{LPL}, AFBA_{FB} and PLP_L are calculated

    Microbiota and bile acid profiles in retinoic acid-primed mice that exhibit accelerated liver regeneration.

    Get PDF
    Background & aimsAll-trans Retinoic acid (RA) regulates hepatic lipid and bile acid homeostasis. Similar to bile acid (BA), RA accelerates partial hepatectomy (PHx)-induced liver regeneration. Because there is a bidirectional regulatory relationship between gut microbiota and BA synthesis, we examined the effect of RA in altering the gut microbial population and BA composition and established their relationship with hepatic biological processes during the active phases of liver regeneration.MethodsC57BL/6 mice were treated with RA orally followed by 2/3 PHx. The roles of RA in shifting gut microbiota and BA profiles as well as hepatocyte metabolism and proliferation were studied.ResultsRA-primed mice exhibited accelerated hepatocyte proliferation revealed by higher numbers of Ki67-positive cells compared to untreated mice. Firmicutes and Bacteroidetes phyla dominated the gut microbial community (>85%) in both control and RA-primed mice after PHx. RA reduced the ratio of Firmicutes to Bacteroidetes, which was associated with a lean phenotype. Consistently, RA-primed mice lacked transient lipid accumulation normally found in regenerating livers. In addition, RA altered BA homeostasis and shifted BA profiles by increasing the ratio of hydrophilic to hydrophobic BAs in regenerating livers. Accordingly, metabolic regulators fibroblast growth factor 21, Sirtuin1, and their downstream targets AMPK and ERK1/2 were more robustly activated in RA-primed than unprimed regenerating livers.ConclusionsPriming mice with RA resulted in a lean microbiota composition and hydrophilic BA profiles, which were associated with facilitated metabolism and enhanced cell proliferation
    corecore