16,508 research outputs found

    Fluctuation of Conductance Peak Spacings in Large Semiconductor Quantum Dots

    Full text link
    Fluctuation of Coulomb blockade peak spacings in large two-dimensional semiconductor quantum dots are studied within a model based on the electrostatics of several electron islands among which there are random inductive and capacitive couplings. Each island can accommodate electrons on quantum orbitals whose energies depend also on an external magnetic field. In contrast with a single island quantum dot, where the spacing distribution is close to Gaussian, here the distribution has a peak at small spacing value. The fluctuations are mainly due to charging effects. The model can explain the occasional occurrence of couples or even triples of closely spaced Coulomb blockade peaks, as well as the qualitative behavior of peak positions with the applied magnetic field.Comment: 13 pages, 4 figures, accepted for publication in PR

    Searching for Dark Matter Signals in the Left-Right Symmetric Gauge Model with CP Symmetry

    Full text link
    We investigate singlet scalar dark matter (DM) candidate in a left-right symmetric gauge model with two Higgs bidoublets (2HBDM) in which the stabilization of the DM particle is induced by the discrete symmetries P and CP. According to the observed DM abundance, we predict the DM direct and indirect detection cross sections for the DM mass range from 10 GeV to 500 GeV. We show that the DM indirect detection cross section is not sensitive to the light Higgs mixing and Yukawa couplings except the resonance regions. The predicted spin-independent DM-nucleon elastic scattering cross section is found to be significantly dependent on the above two factors. Our results show that the future DM direct search experiments can cover the most parts of the allowed parameter space. The PAMELA antiproton data can only exclude two very narrow regions in the 2HBDM. It is very difficult to detect the DM direct or indirect signals in the resonance regions due to the Breit-Wigner resonance effect.Comment: 24 pages, 8 figures. minor changes and a reference added, published in Phys. Rev.

    Fractional quantum Hall effect at ν=5/2\nu = 5/2: Ground states, non-Abelian quasiholes, and edge modes in a microscopic model

    Full text link
    We present a comprehensive numerical study of a microscopic model of the fractional quantum Hall system at filling fraction ν=5/2\nu = 5/2, based on the disc geometry. Our model includes Coulomb interaction and a semi-realistic confining potential. We also mix in some three-body interaction in some cases to help elucidate the physics. We obtain a phase diagram, discuss the conditions under which the ground state can be described by the Moore-Read state, and study its competition with neighboring stripe phases. We also study quasihole excitations and edge excitations in the Moore-Read--like state. From the evolution of edge spectrum, we obtain the velocities of the charge and neutral edge modes, which turn out to be very different. This separation of velocities is a source of decoherence for a non-Abelian quasihole/quasiparticle (with charge ±e/4\pm e/4) when propagating at the edge; using numbers obtained from a specific set of parameters we estimate the decoherence length to be around four microns. This sets an upper bound for the separation of the two point contacts in a double point contact interferometer, designed to detect the non-Abelian nature of such quasiparticles. We also find a state that is a potential candidate for the recently proposed anti-Pfaffian state. We find the speculated anti-Pfaffian state is favored in weak confinement (smooth edge) while the Moore-Read Pfaffian state is favored in strong confinement (sharp edge).Comment: 15 pages, 9 figures; Estimate of e/4 quasiparticle/hole coherence length when propagating along the edge modified in response to a recent revision of Ref. 25, and minor changes elsewher

    Antiphase Synchronization in a Flagellar-Dominance Mutant of Chlamydomonas

    Get PDF
    Groups of beating flagella or cilia often synchronize so that neighboring filaments have identical frequencies and phases. A prime example is provided by the unicellular biflagellate Chlamydomonas reinhardtii, which typically displays synchronous in-phase beating in a low-Reynolds number version of breaststroke swimming. We report here the discovery that ptx1, a flagellar dominance mutant of C. reinhardtii, can exhibit synchronization in precise antiphase, as in the freestyle swimming stroke. Long-duration high-speed imaging shows that ptx1 flagella switch stochastically between in-phase and antiphase states, and that the latter has a distinct waveform and significantly higher frequency, both of which are strikingly similar to those found during phase slips that stochastically interrupt in-phase beating of the wildtype. Possible mechanisms underlying these observations are discussed.Comment: 5 pages, 4 figure

    Long-term, low-dose lead exposure alters the gonadotropin-releasing hormone system in the male rat.

    Get PDF
    Lead is a male reproductive toxicant. Data suggest that rats dosed with relatively high levels of lead acetate for short periods of time induced changes in the hypothalamic gonadotropin-releasing hormone (GnRH) at the molecular level, but these changes were attenuated with increased concentration of exposure. The current study evaluated whether exposure to low levels of lead acetate over longer periods of time would produce a similar pattern of adaptation to toxicity at the molecular and biologic levels. Adult 100-day-old Sprague-Dawley male rats were dosed with 0, 0.025, 0.05, 0.1, and 0.3% lead acetate in water. Animals were killed after 1, 4, 8, and 16 weeks of treatment. Luteinzing hormone (LH) and GnRH levels were measured in serum, and lead levels were quantified in whole blood. Hypothalamic GnRH mRNA levels were also quantified. We found no significant differences in serum LH and GnRH among the groups of animals treated within each time period. A significant dose-related increase of GnRH mRNA concentrations with lead dosing occurred in animals treated for 1 week. Animals treated for more than 1 week also exhibited a significant increase in GnRH mRNA, but with an attenuation of the increase at the higher concentrations of lead with increased duration of exposure. We conclude that the signals within and between the hypothalamus and pituitary gland appear to be disrupted by long-term, low-dose lead exposure
    corecore