23 research outputs found

    Interactive editing of virtual chordae tendineae for the simulation of the mitral valve in a decision support system

    Get PDF
    Purpose: Decision support systems for mitral valve disease are an important step toward personalized surgery planning. A simulation of the mitral valve apparatus is required for decision support. Building a model of the chordae tendineae is an essential component of a mitral valve simulation. Due to image quality and artifacts, the chordae tendineae cannot be reliably detected in medical imaging. Methods: Using the position-based dynamics framework, we are able to realistically simulate the opening and closing of the mitral valve. Here, we present a heuristic method for building an initial chordae model needed for a successful simulation. In addition to the heuristic, we present an interactive editor to refine the chordae model and to further improve pathology reproduction as well as geometric approximation of the closed valve. Results: For evaluation, five mitral valves were reconstructed based on image sequences of patients scheduled for mitral valve surgery. We evaluated the approximation of the closed valves using either just the heuristic chordae model or a manually refined model. Using the manually refined models, prolapse was correctly reproduced in four of the five cases compared to two of the five cases when using the heuristic. In addition, using the editor improved the approximation in four cases. Conclusions: Our approach is suitable to create realistically parameterized mitral valve apparatus reconstructions for the simulation of normally and abnormally closing valves in a decision support system

    Importance of Preserved Tricuspid Valve Function for Effective Soft Robotic Augmentation of the Right Ventricle in Cases of Elevated Pulmonary Artery Pressure

    Get PDF
    Purpose: In clinical practice, many patients with right heart failure (RHF) have elevated pulmonary artery pressures and increased afterload on the right ventricle (RV). In this study, we evaluated the feasibility of RV augmentation using a soft robotic right ventricular assist device (SRVAD), in cases of increased RV afterload. Methods: In nine Yorkshire swine of 65-80 kg, a pulmonary artery band was placed to cause RHF and maintained in place to simulate an ongoing elevated afterload on the RV. The SRVAD was actuated in synchrony with the ventricle to augment native RV output for up to one hour. Hemodynamic parameters during SRVAD actuation were compared to baseline and RHF levels. Results: Median RV cardiac index (CI) was 1.43 (IQR, 1.37-1.80) L/min/m(2) and 1.26 (IQR 1.05-1.57) L/min/m(2) at first and second baseline. Upon PA banding RV CI fell to a median of 0.79 (IQR 0.63-1.04) L/min/m(2). Device actuation improved RV CI to a median of 0.87 (IQR 0.78-1.01), 0.85 (IQR 0.64-1.59) and 1.11 (IQR 0.67-1.48) L/min/m(2) at 5 min (p = 0.114), 30 min (p = 0.013) and 60 (p = 0.033) minutes respectively. Statistical GEE analysis showed that lower grade of tricuspid regurgitation at time of RHF (p = 0.046), a lower diastolic pressure at RHF (p = 0.019) and lower mean arterial pressure at RHF (p = 0.024) were significantly associated with higher SRVAD effectiveness. Conclusions: Short-term augmentation of RV function using SRVAD is feasible even in cases of elevated RV afterload. Moderate or severe tricuspid regurgitation were associated with reduced device effectiveness

    B cell sub-types following acute malaria and associations with clinical immunity.

    Get PDF
    BACKGROUND: Repeated exposure to Plasmodium falciparum is associated with perturbations in B cell sub-set homeostasis, including expansion atypical memory B cells. However, B cell perturbations immediately following acute malaria infection have been poorly characterized, especially with regard to their relationship with immunity to malaria. METHODS: To better understand the kinetics of B cell sub-sets following malaria, the proportions of six B cell sub-sets were assessed at five time points following acute malaria in four to 5 years old children living in a high transmission region of Uganda. B cell sub-set kinetics were compared with measures of clinical immunity to malaria-lower parasite density at the time of malaria diagnosis and recent asymptomatic parasitaemia. RESULTS: Atypical memory B cell and transitional B cell proportions increased following malaria. In contrast, plasmablast proportions were highest at the time of malaria diagnosis and rapidly declined following treatment. Increased proportions of atypical memory B cells were associated with greater immunity to malaria, whereas increased proportions of transitional B cells were associated with evidence of less immunity to malaria. CONCLUSIONS: These findings highlight the dynamic changes in multiple B cell sub-sets following acute, uncomplicated malaria, and how these sub-sets are associated with developing immunity to malaria

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Soft Robotic Sleeve Supports Heart Function

    No full text
    There is much interest in form-fitting, low-modulus, implantable devices or soft robots that can mimic or assist in complex biological functions such as the contraction of heartmuscle.Wepresent a soft robotic sleeve that is implanted around the heart and actively compresses and twists to act as a cardiac ventricular assist device. The sleeve does not contact blood, obviating the need for anticoagulation therapy or blood thinners, and reduces complications with current ventricular assist devices, such as clotting and infection. Our approach used a biologically inspired design to orient individual contracting elements or actuators in a layered helical and circumferential fashion, mimicking the orientation of the outer two muscle layers of the mammalian heart. The resulting implantable soft robot mimicked the form and function of the native heart, with a stiffness value of the same order of magnitude as that of the heart tissue. We demonstrated feasibility of this soft sleeve device for supporting heart function in a porcine model of acute heart failure. The soft robotic sleeve can be customized to patient-specific needs and may have the potential to act as a bridge to transplant for patients with heart failure

    Outcomes and survival following thoracic endovascular repair in patients with aortic aneurysms limited to the descending thoracic aorta

    No full text
    Abstract Background Thoracic endovascular aortic repair (TEVAR) is a well-established therapy for descending aortic aneurysms (DTA). There is a paucity of large series reporting the mid- and long-term outcomes from this era. The main aim of this study was to evaluate the outcomes of TEVAR with regards to the effect of aortic morphology and procedure-related variables on survival, reintervention and freedom from endoleaks. Methods In this retrospective single center study, we evaluated the clinical outcomes among 158 consecutive patients with DTA than underwent TEVAR between 2006 and 2019 at our center. The cohort included 51% patients with device landing zones proximal to the subclavian artery and 25.9% patients undergoing an emergent or urgent TEVAR. The primary outcome was survival, and secondary outcomes were reintervention and occurrence of endoleaks. Results Median follow-up was 33 months [IQR 12 to 70] while 50 patients (30.6%) had longer than 5-year follow-up. With a median patient age of 74 years, post-operative Kaplan Meyer survival estimates were 94.3% (95%CI 90.8–98.0, SE 0.018%) at 30 days, 76.4% (95%CI 70.0–83.3, SE 0.034%) at one year and, 52.9% (95%CI 45.0–62.2, SE 0.043%) at five years. Freedom from reintervention at 30 days, one year, and five years was 92.9% (95%CI 89.0–97.1, SE 0.021%), 80.0% (95%CI 72.6–88.1, SE 0.039%), and 52.8% (95%CI 41.4–67.4, SE 0.065%), respectively. On cox regression analysis greater aneurysm diameter, and the use of device landing zones in aortic regions 0–1 were associated with an increased probability of all-cause mortality, and with reintervention during follow-up. Independent of aneurysm size undergoing urgent or emergent TEVAR was associated with higher mortality risk for the first three years post-operative but not on long-term follow-up. Conclusions Larger aneurysms and those requiring stent-graft landing in aortic zones 0 or 1, are associated with higher risk for mortality and reintervention. There remains a need to optimize clinical management and device design for larger proximal aneurysms

    Interactive editing of virtual chordae tendineae for the simulation of the mitral valve in a decision support system

    No full text
    Purpose Decision support systems for mitral valve disease are an important step toward personalized surgery planning. A simulation of the mitral valve apparatus is required for decision support. Building a model of the chordae tendineae is an essential component of a mitral valve simulation. Due to image quality and artifacts, the chordae tendineae cannot be reliably detected in medical imaging. Methods Using the position-based dynamics framework, we are able to realistically simulate the opening and closing of the mitral valve. Here, we present a heuristic method for building an initial chordae model needed for a successful simulation. In addition to the heuristic, we present an interactive editor to refine the chordae model and to further improve pathology reproduction as well as geometric approximation of the closed valve. Results For evaluation, five mitral valves were reconstructed based on image sequences of patients scheduled for mitral valve surgery. We evaluated the approximation of the closed valves using either just the heuristic chordae model or a manually refined model. Using the manually refined models, prolapse was correctly reproduced in four of the five cases compared to two of the five cases when using the heuristic. In addition, using the editor improved the approximation in four cases. Conclusions Our approach is suitable to create realistically parameterized mitral valve apparatus reconstructions for the simulation of normally and abnormally closing valves in a decision support system.ISSN:1861-6410ISSN:1861-642
    corecore