477 research outputs found

    Electron‐impact spectroscopy of various diketone compounds

    Get PDF
    The spectra of the diketone compounds biacetyl, acetylacetone, acetonylacetone, 1,2‐cyclohexanedione, and 1,4‐cyclohexanedione have been investigated by the technique of low‐energy variable‐angle electron energy‐loss spectroscopy. With this method low‐lying, spin‐forbidden transitions have been observed. The energy difference between the lowest spin‐allowed and spin‐forbidden n→π∗ excitations in the acyclic diketones is found to be 0.35 eV, on average, which is nearly the same as that of comparable acyclic monoketone compounds; in 1,2‐cyclohexanedione, however, this energy difference is 0.84 eV, more than twice as large. This discrepancy in the magnitude of the n→π∗ singlet–triplet splittings may be attributed to differing amounts of overlap between the initial and final orbitals

    An electron-impact spectroscopy investigation of CH_3 and some of its pyrolytic precursors

    Get PDF
    The electronic spectrum of the methyl radical CH_3 was investigated by the technique of variable‐angle electron energy‐loss spectroscopy. By means of pyrolytic decomposition three possible sources of this radical were tried (tetramethyl tin, ethyl nitrite, and di‐t‐butyl‐peroxide). The spectra of these precursors were obtained. Using di‐t‐butyl‐peroxide, relative differential cross sections for the lowest allowed A″_2 3s Rydberg transition in CH_3 (5.73 eV) were determined at incident energies of 50 and 25 eV. The behavior of the differential cross section for this band is analogous to that of a spin‐allowed transition in a closed shell system and, as expected, in the vicinity of this band no transition of a spin‐forbidden nature is detected

    Stochastic stability for roommate markets

    Get PDF

    Accurate Charge-Dependent Nucleon-Nucleon Potential at Fourth Order of Chiral Perturbation Theory

    Full text link
    We present the first nucleon-nucleon potential at next-to-next-to-next-to-leading order (fourth order) of chiral perturbation theory. Charge-dependence is included up to next-to-leading order of the isospin-violation scheme. The accuracy for the reproduction of the NN data below 290 MeV lab. energy is comparable to the one of phenomenological high-precision potentials. Since NN potentials of order three and less are known to be deficient in quantitative terms, the present work shows that the fourth order is necessary and sufficient for a reliable NN potential derived from chiral effective Lagrangians. The new potential provides a promising starting point for exact few-body calculations and microscopic nuclear structure theory (including chiral many-body forces derived on the same footing).Comment: 4 pages Revtex including one figur

    BMC Bioinformatics

    No full text
    Background: For heterogeneous tissues, such as blood, measurements of gene expression are confounded by relative proportions of cell types involved. Conclusions have to rely on estimation of gene expression signals for homogeneous cell populations, e.g. by applying micro-dissection, fluorescence activated cell sorting, or in-silico deconfounding. We studied feasibility and validity of a non-negative matrix decomposition algorithm using experimental gene expression data for blood and sorted cells from the same donor samples. Our objective was to optimize the algorithm regarding detection of differentially expressed genes and to enable its use for classification in the difficult scenario of reversely regulated genes. This would be of importance for the identification of candidate biomarkers in heterogeneous tissues. Results: Experimental data and simulation studies involving noise parameters estimated from these data revealed that for valid detection of differential gene expression, quantile normalization and use of non-log data are optimal. We demonstrate the feasibility of predicting proportions of constituting cell types from gene expression data of single samples, as a prerequisite for a deconfounding-based classification approach. Classification cross-validation errors with and without using deconfounding results are reported as well as sample-size dependencies. Implementation of the algorithm, simulation and analysis scripts are available. Conclusions: The deconfounding algorithm without decorrelation using quantile normalization on non-log data is proposed for biomarkers that are difficult to detect, and for cases where confounding by varying proportions of cell types is the suspected reason. In this case, a deconfounding ranking approach can be used as a powerful alternative to, or complement of, other statistical learning approaches to define candidate biomarkers for molecular diagnosis and prediction in biomedicine, in realistically noisy conditions and with moderate sample sizes

    Accuracy of diabetes screening methods used for people with tuberculosis, Indonesia, Peru, Romania, South Africa

    Get PDF
    Objective To evaluate the performance of diagnostic tools for diabetes mellitus, including laboratory methods and clinical risk scores, in newly-diagnosed pulmonary tuberculosis patients from four middle-income countries. Methods In a multicentre, prospective study, we recruited 2185 patients with pulmonary tuberculosis from sites in Indonesia, Peru, Romania and South Africa from January 2014 to September 2016. Using laboratory-measured glycated haemoglobin (HbA1c) as the gold standard, we measured the diagnostic accuracy of random plasma glucose, point-of-care HbA1c, fasting blood glucose, urine dipstick, published and newly derived diabetes mellitus risk scores and anthropometric measurements. We also analysed combinations of tests, including a two-step test using point-of-care HbA1cwhen initial random plasma glucose was ≄ 6.1 mmol/L. Findings The overall crude prevalence of diabetes mellitus among newly diagnosed tuberculosis patients was 283/2185 (13.0%; 95% confidence interval, CI: 11.6–14.4). The marker with the best diagnostic accuracy was point-of-care HbA1c (area under receiver operating characteristic curve: 0.81; 95% CI: 0.75–0.86). A risk score derived using age, point-of-care HbA1c and random plasma glucose had the best overall diagnostic accuracy (area under curve: 0.85; 95% CI: 0.81–0.90). There was substantial heterogeneity between sites for all markers, but the two-step combination test performed well in Indonesia and Peru. Conclusion Random plasma glucose followed by point-of-care HbA1c testing can accurately diagnose diabetes in tuberculosis patients, particularly those with substantial hyperglycaemia, while reducing the need for more expensive point-of-care HbA1c testing. Risk scores with or without biochemical data may be useful but require validation
    • 

    corecore