45 research outputs found

    Estrogen effects on triglyceride metabolism in analbuminemic rats

    Get PDF
    Estrogen effects on triglyceride metabolism in analbuminemic rats.BackgroundTriglyceride (TG) levels are normally lower in female rats, while the opposite is the case in the Nagase analbuminemic rats (NAR). Increased TG levels in normal males are caused by a testosterone-mediated decrease in postheparin (PH) lipoprotein lipase (LpL). Castration of males reduces TG, while castration of females is without effect. TG levels are reduced by castration of the female NAR, suggesting that estrogen rather than testosterone causes hypertriglyceridemia in this strain. The mechanism for this increase is unknown.MethodsWe measured secretion of very-low density lipoprotein (VLDL) TG using Triton WR 1339 clearance as the disappearance from blood of 3H-trioleate and 14C-cholesterol–labeled chylomicrons (CM), and the activity of the PH lipases: LpL and hepatic lipase (HL). All were determined in Sprague-Dawley (SD) and NAR female, male, and ovariectomized (OVX) rats.ResultsTG levels were significantly greater in female NAR in comparison to all other groups. Ovariectomy of NAR significantly ameliorated hypertriglyceridemia. VLDL TG secretion was significantly greater in intact female NAR compared with all other groups. There were no other differences in VLDL TG secretion among the other groups. The clearance of CM was greatest in female SD rats, and OVX had no effect. NAR cleared CM less well than did SD rats (P < 0.001), but among NAR, clearance was greatest in OVX NAR and male NAR (P < 0.002). Both PH LpL activity and HL activity were lowest in female NAR (P < 0.05). Ovariectomy partially corrected the defect in HL (P < 0.05).ConclusionTG levels in female NAR are in part a result of increased VLDL-TG secretion, an effect mediated by estrogen. The presence of an estrogen-mediated catabolic defect that was alleviated by OVX was also observed. This catabolic defect is likely a result of an estrogen-mediated decrease both in LpL and HL expressed only in the presence of analbuminemia

    Novel lipoprotein density profiling in healthy dogs of various breeds, healthy miniature schnauzers, and miniature schnauzers with hyperlipidemia

    Get PDF
    BACKGROUND: Despite the importance of abnormalities in lipoprotein metabolism in clinical canine medicine, the fact that most previously used methods for lipoprotein profiling are rather laborious and time-consuming has been a major obstacle to the wide clinical application and use of lipoprotein profiling in this species. The aim of the present study was to assess the feasibility of a continuous lipoprotein density profile (CLPDP) generated within a bismuth sodium ethylenediaminetetraacetic acid (NaBiEDTA) density gradient to characterize and compare the lipoprotein profiles of healthy dogs of various breeds, healthy Miniature Schnauzers, and Miniature Schnauzers with primary hypertriacylglycerolemia. A total of 35 healthy dogs of various breeds with serum triacylglycerol (TAG) and cholesterol concentrations within their respective reference intervals were selected for use as a reference population. Thirty-one Miniature Schnauzers with serum TAG and cholesterol concentrations within their respective reference intervals and 31 Miniature Schnauzers with hypertriacylglyceridemia were also included in the study. RESULTS: The results suggest that CLPDP using NaBiEDTA provides unique diagnostic information in addition to measurements of serum TAG and cholesterol concentrations and that it is a useful screening method for dogs with suspected lipoprotein metabolism disorders. Using the detailed and continuous density distribution information provided by the CLPDP, important differences in lipoprotein profiles can be detected even among dogs that have serum TAG and cholesterol concentrations within the reference interval. Miniature Schnauzers with serum TAG and cholesterol concentrations within the reference interval had significantly different lipoprotein profiles than dogs of various other breeds. In addition, it was further established that specific lipoprotein fractions are associated with hypertriacylglyceridemia in Miniature Schnauzers. CONCLUSIONS: The results of the present study suggest that density gradient ultracentrifugation using NaBiEDTA is a useful screening method for the study of lipoprotein profiles in dogs. Therefore, this method could potentially be used for diagnostic purposes for the separation of dogs suspected of having lipoprotein abnormalities from healthy dogs

    Agpat6 —a novel lipid biosynthetic gene required for triacylglycerol production in mammary epithelium

    Get PDF
    In analyzing the sequence tags for mutant mouse embryonic stem (ES) cell lines in BayGenomics (a mouse gene-trapping resource), we identified a novel gene, Agpat6, with sequence similarities to previously characterized glycerolipid acyltransferases. Agpat6’s closest family member is another novel gene that we have provisionally designated Agpat8. Both Agpat6 and Agpat8 are conserved from plants, nematodes, and flies to mammals. AGPAT6, which is predicted to contain multiple membrane-spanning helices, is found exclusively within the endoplasmic reticulum in mammalian cells. To gain insights into the in vivo importance of Agpat6, we used the Agpat6 ES cell line from BayGenomics to create Agpat6-deficient (Agpat6−/−) mice. Agpat6−/− mice lacked full-length Agpat6 transcripts, as judged by northern blots. One of the most striking phenotypes of Agpat6−/− mice was a defect in lactation. Pups nursed by Agpat6−/− mothers die perinatally. Normally, Agpat6 is expressed at high levels in the mammary epithelium of breast tissue, but not in the surrounding adipose tissue. Histological studies revealed that the aveoli and ducts of Agpat6−/− lactating mammary glands were underdeveloped, and there was a dramatic decrease in size and number of lipid droplets within mammary epithelial cells and ducts. Also, the milk from Agpat6−/− mice was markedly depleted in diacylglycerols and triacylglycerols. Thus, we identified a novel glycerolipid acyltransferase of the endoplasmic reticulum, AGPAT6, which is crucial for the production of milk fat by the mammary gland

    Palmitoleate Induces Hepatic Steatosis but Suppresses Liver Inflammatory Response in Mice

    Get PDF
    The interaction between fat deposition and inflammation during obesity contributes to the development of non-alcoholic fatty liver disease (NAFLD). The present study examined the effects of palmitoleate, a monounsaturated fatty acid (16∶1n7), on liver metabolic and inflammatory responses, and investigated the mechanisms by which palmitoleate increases hepatocyte fatty acid synthase (FAS) expression. Male wild-type C57BL/6J mice were supplemented with palmitoleate and subjected to the assays to analyze hepatic steatosis and liver inflammatory response. Additionally, mouse primary hepatocytes were treated with palmitoleate and used to analyze fat deposition, the inflammatory response, and sterol regulatory element-binding protein 1c (SREBP1c) activation. Compared with controls, palmitoleate supplementation increased the circulating levels of palmitoleate and improved systemic insulin sensitivity. Locally, hepatic fat deposition and SREBP1c and FAS expression were significantly increased in palmitoleate-supplemented mice. These pro-lipogenic events were accompanied by improvement of liver insulin signaling. In addition, palmitoleate supplementation reduced the numbers of macrophages/Kupffer cells in livers of the treated mice. Consistently, supplementation of palmitoleate decreased the phosphorylation of nuclear factor kappa B (NF-κB, p65) and the expression of proinflammatory cytokines. These results were recapitulated in primary mouse hepatocytes. In terms of regulating FAS expression, treatment of palmitoleate increased the transcription activity of SREBP1c and enhanced the binding of SREBP1c to FAS promoter. Palmitoleate also decreased the phosphorylation of NF-κB p65 and the expression of proinflammatory cytokines in cultured macrophages. Together, these results suggest that palmitoleate acts through dissociating liver inflammatory response from hepatic steatosis to play a unique role in NAFLD

    Plasma Yolk Precursor Dynamics during Egg Production by Female Greater Scaup (Aythya marila): Characterization and Indices of Reproductive State

    No full text
    ABSTRACT We characterized dynamics of the plasma yolk precursors vitellogenin (VTG), very-low-density lipoprotein (total VLDL-TG), and VLDL particle size distribution during egg production by female greater scaup (order: Anseriformes, Aythya marila). We also evaluated VTG and total VLDL-TG as physiological indices of reproductive state. Mean ‫1ע(‬ SE) plasma concentrations of VTG and total VLDL-TG for females with nondeveloped ovaries were mg Zn mL Ϫ1 and 0.58 ‫ע‬ 0.05 3.75 ‫ע‬ mmol TG L Ϫ1 , respectively. Yolk precursor concentrations 0.29 increased rapidly to maximum levels in association with small increases in ovary mass during rapid follicle growth. Mean concentrations of VTG and total VLDL-TG for females with a full ovarian follicle hierarchy were mg Zn mL Ϫ1 and 3.38 ‫ע‬ 0.40 mmol TG L Ϫ1 , respectively. Concentrations of VTG 7.31 ‫ע‬ 2.56 and total VLDL remained elevated throughout the laying cycle and decreased markedly by 3 d into incubation. Individual reproductive state (non-egg producing vs. egg producing) was more accurately identified by plasma profiles of VTG (90%) than by those of total VLDL-TG (74%). Greater scaup VLDL particle sizes during egg production were within the range for predicted yolk-targeted VLDL size (25-44 nm). We conclude that plasma profiles of VTG and total VLDL-TG can be used as nonlethal, physiological indices of reproductive state in greater scaup and should be of great utility to a variety of evolutionary, ecological, and applied conservation studies of reproduction in waterfowl
    corecore