5 research outputs found

    Genomic Sequence of a Ranavirus Isolated from Pike-Perch Sander lucioperca

    Get PDF
    The pike-perch iridovirus (PPIV) was isolated in Finland from apparently healthy pike-perch fingerlings during routine disease surveillance. Our phylogenomic analysis revealed that PPIV is the first fish member of a clade of ranaviruses previously described from European and Chinese amphibians

    Phylogenetic relationships in the family Alloherpesviridae

    Get PDF
    Phylogenetic relationships among herpesviruses (HVs) of mammals, birds, and reptiles have been studied extensively, whereas those among other HVs are relatively unexplored. We have reconstructed the phylogenetic relationships among 13 fish and amphibian HVs using maximum likelihood and Bayesian analyses of amino acid sequences predicted from parts of the DNA polymerase and terminase genes. The relationships among 6 of these viruses were confirmed using the partial DNA polymerase data plus the complete sequences of the terminase, helicase, and triplex protein genes; the position of these viruses among all other sequenced HVs was also investigated using the complete terminase gene. The results established the monophyly of the fish and amphibian HVs (Alloherpesviridae) separate from the HVs of mammals, birds, and reptiles (Herpesviridae) and the single recognized HV of bivalve mollusks (Malacoherpesviridae) in the order Herpesvirales. Two major clades in the family Alloherpesviridae were recognized: one consisting of viruses from cyprinid and anguillid hosts and the other of viruses from ictalurid, salmonid, acipenserid, and ranid hosts. A comparison of virus and host phylogenies suggested that closely related HVs in this family may have coevolved with their hosts, whereas significant codiversification was not apparent for the more distantly related viruses

    Koi herpesvirus represents a third cyprinid herpesvirus (CyHV-3)in the family Herpesviridae

    No full text
    The sequences of four complete genes were analysed in order to determine the relatedness of koi herpesvirus (KHV) to three fish viruses in the family Herpesviridae: carp pox herpesvirus (Cyprinid herpesvirus 1, CyHV-1), haematopoietic necrosis herpesvirus of goldfish (Cyprinid herpesvirus 2, CyHV-2) and channel catfish virus (Ictalurid herpesvirus 1, IcHV-1). The genes were predicted to encode a helicase, an intercapsomeric triplex protein, the DNA polymerase and the major capsid protein. The results showed that KHV is related closely to CyHV-1 and CyHV-2, and that the three cyprinid viruses are related, albeit more distantly, to IcHV-1. Twelve KHV isolates from four diverse geographical areas yielded identical sequences for a region of the DNA polymerase gene. These findings, with previously published morphological and biological data, indicate that KHV should join the group of related lower-vertebrate viruses in the family Herpesviridae under the formal designation Cyprinid herpesvirus 3 (CyHV-3)

    Genome sequences of three koi herpesvirus isolates representing the expanding distribution of an emerging disease threatening koi and common carp worldwide

    No full text
    Since the mid-1990s, lethal infections of koi herpesvirus (KHV) have been spreading, threatening the worldwide production of common carp and koi (both Cyprinus carpio). The complete genome sequences of three KHV strains from Japan, the United States, and Israel revealed a 295-kbp genome containing a 22-kbp terminal direct repeat. The finding that 15 KHV genes have clear homologs in the distantly related channel catfish virus (ictalurid herpesvirus 1) confirms the proposed place of KHV in the family Herpesviridae, specifically in the branch with fish and amphibian hosts. KHV thus has the largest genome reported to date for this family. The three strains were interpreted as having arisen from a wild-type parent encoding 156 unique protein-coding genes, 8 of which are duplicated in the terminal repeat. In each strain, four to seven genes from among a set of nine are fragmented by frameshifts likely to render the encoded proteins nonfunctional. Six of the affected genes encode predicted membrane glycoproteins. Frameshifts or other mutations close to the 3β€² ends of coding sequences were identified in a further six genes. The conclusion that at least some of these mutations occurred in vivo prompts the hypothesis that loss of gene functions might be associated with emergence of the disease and provides a basis for further investigations into the molecular epidemiology of the virus
    corecore