8 research outputs found

    Inactivation of SREBP-1a Phosphorylation Prevents Fatty Liver Disease in Mice: Identification of Related Signaling Pathways by Gene Expression Profiles in Liver and Proteomes of Peroxisomes

    No full text
    The key lipid metabolism transcription factor sterol regulatory element-binding protein (SREBP)-1a integrates gene regulatory effects of hormones, cytokines, nutrition and metabolites as lipids, glucose, or cholesterol via phosphorylation by different mitogen activated protein kinase (MAPK) cascades. We have previously reported the impact of SREBP-1a phosphorylation on the phenotype in transgenic mouse models with liver-specific overexpression of the N-terminal transcriptional active domain of SREBP-1a (alb-SREBP-1a) or a MAPK phosphorylation site-deficient variant (alb-SREBP-1a∆P; (S63A, S117A, T426V)), respectively. In this report, we investigated the molecular basis of the systemic observations by holistic analyses of gene expression in liver and of proteome patterns in lipid-degrading organelles involved in the pathogenesis of metabolic syndrome, i.e., peroxisomes, using 2D-DIGE and mass spectrometry. The differences in hepatic gene expression and peroxisomal protein patterns were surprisingly small between the control and alb-SREBP-1a mice, although the latter develop a severe phenotype with visceral obesity and fatty liver. In contrast, phosphorylation site-deficient alb-SREBP-1a∆P mice, which are protected from fatty liver disease, showed marked differences in hepatic gene expression and peroxisomal proteome patterns. Further knowledge-based analyses revealed that disruption of SREBP-1a phosphorylation resulted in massive alteration of cellular processes, including signs for loss of targeting lipid pathways

    Novel Insights into the Adipokinome of Obese and Obese/Diabetic Mouse Models

    No full text
    The group of adipokines comprises hundreds of biological active proteins and peptides released from adipose tissue. Alterations of those complex protein signatures are suggested to play a crucial role in the pathophysiology of multifactorial, metabolic diseases. We hypothesized that also the pathophysiology of type-2-diabetes is linked to the dysregulation of the adipocyte secretome. To test this, we investigated mouse models with monogenic defects in leptin signaling which are susceptible to adipositas (C57BL/6 Cg-Lepob (obob)) or adipositas with diabetes (C57BL/KS Cg-Leprdb (dbdb)) according to their genetic background. At the age of 17 weeks, visceral fat was obtained and primary murine adipocytes were isolated to harvest secretomes. Quantitative proteome analyses (LC-ESI-MS/MS) identified more than 800 potential secreted proteins. The secretome patterns revealed significant differences connected to the pathophysiology of obese mice. Pathway analyses indicated that these differences focus on exosome modelling, but failed to provide more precise specifications. To investigate the relationship of secretome data to insulin sensitivity, we examined the content of diabetogenic lipids, i.e., diacylglycerols (DAGs), identified as key players in lipid-induced insulin resistance. In contrast to obob mice, fat tissue of dbdb mice showed elevated DAG content, especially of DAG species with saturated fatty acid C16:0 and C18:0, while unsaturated fatty acid C16:1 were only changed in obob. Furthermore, DAG signatures of the models specifically correlate to secreted regulated adipokines indicating specific pathways. In conclusion, our data further support the concept that the fat tissue is an endocrine organ that releases bioactive factors corresponding to adipose tissue health status

    Sex steroid-induced changes in circulating monocyte chemoattractant protein-1 levels may contribute to metabolic dysfunction in obese men

    No full text
    Context: Low testosterone accompanied by elevated estradiol associates with the development of metabolic dysfunction in men. Objective: The aim of the study was to explore the hypothesis that alterations in sex steroid levels induce metabolic dysfunction through adipokines. Design: Circulating levels of sex steroids and 28 adipokines were determined in a cross-sectional study of morbidly obese men and aged-matched controls, as well as in a randomized clinical trial with healthy young men in which obesity-related alterations in sex steroid levels were mimicked by treatment with an aromatase inhibitor plus estradiol patches. Results: Morbidly obese men had lower testosterone levels than normal-weight controls. Estradiol levels were increased in morbidly obese men (without DM2) as compared to normal-weight controls. Circulating levels of multiple proinflammatory cytokines, including IL-1Ra, IL-5, IL-6, IL-10, leptin, monocyte chemoattractant protein 1 (MCP1), and macrophage inflammatory protein 1 alpha, positively associated with estradiol and negatively with testosterone. The associations with estradiol, but not with testosterone, remained significant after adjusting for adipocyte cell size. In a separate clinical trial, the direct adverse effects of lowering testosterone and raising estradiol on MCP1 were substantiated in vivo. Conclusions: Initial alterations in sex steroid levels may contribute to metabolic dysfunction through adverse effects on adipokine levels in obese men. The direct adverse effects on MCP1, a chemokine highly linked to the development of metabolic dysfunction, were substantiated in a trial mimicking obesity-related alterations of sex steroid levels in healthy young males
    corecore