116 research outputs found

    Giant optical nonlinearities from Rydberg-excitons in semiconductor microcavities

    Full text link
    The realization of exciton-polaritons -- hybrid excitations of semiconductor quantum well excitons and cavity photons -- has been of great technological and scientific significance. In particular, the short-range collisional interaction between excitons has enabled explorations into a wealth of nonequilibrium and hydrodynamical effects that arise in weakly nonlinear polariton condensates. Yet, the ability to enhance optical nonlinearities would enable quantum photonics applications and open up a new realm of photonic many-body physics in a scalable and engineerable solid-state environment. Here we outline a route to such capabilities in cavity-coupled semiconductors by exploiting the giant interactions between excitons in Rydberg-states. We demonstrate that optical nonlinearities in such systems can be vastly enhanced by several orders of magnitude and induce nonlinear processes at the level of single photons.Comment: 17 pages, 5 figure

    Superglass formation in an atomic BEC with competing long-range interactions

    Full text link
    The complex dynamical phases of quantum systems are dictated by atomic interactions that usually evoke an emergent periodic order. Here, we study a quantum many-body system with two competing and substantially different long-range interaction potentials where the dynamical instability towards density order can give way to a superglass phase, i. e., a superfluid disordered amorphous solid, which exhibits local density modulations but no long-range periodic order. We consider a two-dimensional BEC in the Rydberg-dressing regime coupled to an optical standing wave resonator. The dynamic pattern formation in this system is governed by the competition between the two involved interaction potentials: repulsive soft-core interactions arising due to Rydberg dressing and infinite-range sign changing interactions induced by the cavity photons. The superglass phase is found when the two interaction potentials introduce incommensurate length scales. The dynamic formation of this peculiar phase without any externally added disorder is driven by quantum fluctuations and can be attributed to frustration induced by the two competing interaction energies and length scales.Comment: new title, added reference

    Quantum gas microscopy of Rydberg macrodimers

    Full text link
    A microscopic understanding of molecules is essential for many fields of natural sciences but their tiny size hinders direct optical access to their constituents. Rydberg macrodimers - bound states of two highly-excited Rydberg atoms - feature bond lengths easily exceeding optical wavelengths. Here we report on the direct microscopic observation and detailed characterization of such macrodimers in a gas of ultracold atoms in an optical lattice. The size of about 0.7 micrometers, comparable to the size of small bacteria, matches the diagonal distance of the lattice. By exciting pairs in the initial two-dimensional atom array, we resolve more than 50 vibrational resonances. Using our spatially resolved detection, we observe the macrodimers by correlated atom loss and demonstrate control of the molecular alignment by the choice of the vibrational state. Our results allow for precision testing of Rydberg interaction potentials and establish quantum gas microscopy as a powerful new tool for quantum chemistry.Comment: 13 pages, 9 figure

    Superradiant and subradiant states in lifetime-limited organic molecules through laser-induced tuning

    Full text link
    An array of radiatively coupled emitters is an exciting new platform for generating, storing, and manipulating quantum light. However, the simultaneous positioning and tuning of multiple lifetime-limited emitters into resonance remains a significant challenge. Here we report the creation of superradiant and subradiant entangled states in pairs of lifetime-limited and sub-wavelength spaced organic molecules by permanently shifting them into resonance with laser-induced tuning. The molecules are embedded as defects in an organic nanocrystal. The pump light redistributes charges in the nanocrystal and dramatically increases the likelihood of resonant molecules. The frequency spectra, lifetimes, and second-order correlation agree with a simple quantum model. This scalable tuning approach with organic molecules provides a pathway for observing collective quantum phenomena in sub-wavelength arrays of quantum emitters
    • …
    corecore