28,700 research outputs found

    Low-temperature embrittlement of Ti-6Al-4V and Inconel-718 by high pressure hydrogen

    Get PDF
    Notched specimens of titanium alloy and Inconel-718 exhibit little reduction of notch strength at certain low temperatures under 2000 lb/sq in. hydrogen, unnotched specimens are not embrittled at these temperatures. The degree of Inconel-718 embrittlement is lower than earlier observations under 1000 lb/sq in. hydrogen

    Incommensurate nematic fluctuations in the two-dimensional Hubbard model

    Full text link
    We analyze effective d-wave interactions in the two-dimensional extended Hubbard model at weak coupling and small to moderate doping. The interactions are computed from a renormalization group flow. Attractive d-wave interactions are generated via antiferromagnetic spin fluctuations in the pairing and charge channels. Above Van Hove filling, the d-wave charge interaction is maximal at incommensurate diagonal wave vectors, corresponding to nematic fluctuations with a diagonal modulation. Below Van Hove filling a modulation along the crystal axes can be favored. The nematic fluctuations are enhanced by the nearest-neighbor interaction in the extended Hubbard model, but they always remain smaller than the dominant antiferromagnetic, pairing, or charge density wave fluctuations.Comment: 8 pages, 4 figures; figures improve

    Influence of gaseous hydrogen on metals

    Get PDF
    Tensile, fracture toughness, threshold stress intensity for sustained-load crack growth, and cyclic and sustained load crack growth rate measurements were performed on a number of alloys in high-pressure hydrogen and helium environments. The results of tensile tests performed in 34.5 MN/m2 (5000 psi) hydrogen indicated that Inconel 625 was considerable embrittled at ambient temperature but was not embrittled at 144 K (-200 F). The tensile properties of AISI 321 stainless steel were slightly reduced at ambient temperature and 144 K (-200 F). The tensile properties of Ti-5Al-2.5 Sn ELI were essentially unaffected by hydrogen at 144 K (-200 F). OFHC copper was not embrittled by hydrogen at ambient temperature or at 144 K (-200 F)

    Influence of Tire Tread Pattern and Runway Surface Condition on Braking Friction and Rolling Resistance of a Modern Aircraft Tire

    Get PDF
    A series of taxiing tests was conducted at the Langley landing loads track with both braked and unbraked (freely rolling) single and tandem wheels equipped with 32x8.8 type VII aircraft tires of different tread designs to obtain data on tire and braking characteristics during operation on dry and on contaminated concrete and asphalt run ways. Contaminants used were water, slush, JP-4 jet fuel, and organic and detergent fire-extinguishing foams. Forward velocities for the tests ranged from approximately 13 to 104 knots. Vertical loads of approximately 9,000 to 22,000 pounds and tire inflation pressures of 85 to 350 pounds per square inch were used. Results indicated that the unbraked tire rolling resistance increased with increasing forward velocity on dry and on contaminated runway surfaces. Peak tire-ground friction coefficients developed during wheel braking decreased rapidly with increasing velocity on contaminated runways but remained relatively unchanged on dry runways as the forward velocity was increased. Dry-runway friction coefficients were found to be relatively insensitive to tire tread pattern. However, the magnitude of the friction coefficients developed by tires on contaminated runways was extremely sensitive to the tire tread pat tern used, with circumferential-groove treads developing the highest values of friction coefficient, and smooth and dimple treads the lowest values for the tread patterns and runway conditions investigated

    Effect of Tryptophan Analogs on Derepression of the \u3cem\u3eEscherichia coli\u3c/em\u3e Tryptophan Operon by Indole-3-Propionic Acid

    Get PDF
    The abilities of 14 tryptophan analogs to repress the tryptophan (trp) operon have been studied in Escherichia coli cells derepressed by incubation with 0.25 mM indole-3-propionic acid (IPA). trp operon expression was monitored by measuring the specific activities of anthranilate synthase (EC 4.1.3.27) and the tryptophan synthase (EC 4.2.1.20) β subunit. Analogs characterized by modification or removal of the α-amino group or the α-carboxyl group did not repress the trp operon. The only analogs among this group that appeared to interact with the trp aporepressor were IPA, which derepressed the trp operon, and d-tryptophan. Analogs with modifications of the indole ring repressed the trp operon to various degrees. 7-Methyl-tryptophan inhibited anthranilate synthase activity and consequently derepressed the trp operon. Additionally, 7-methyltryptophan prevented IPA-mediated derepression but, unlike tryptophan, did so in a non-coordinate manner, with the later enzymes of the operon being relatively more repressed than the early enzymes. The effect of 7-methyltryptophan on IPA-mediated derepression was likely not due to the interaction of IPA with the allosteric site of anthranilate synthase, even though feedback-resistant mutants of anthranilate synthase were partially resistant to derepression by IPA. The effect of 7-methyltryptophan on derepression by IPA was probably due to the effect of the analog-aporepressor complex on trp operon expression
    corecore