269 research outputs found

    Subterranean ant nests: Trace fossils past and future?

    Get PDF
    Many species of ants excavate complex, species-typical nests in soil. The basic structural units of many nests are descending tunnels connecting flattened, generally horizontal chambers of oval to lobed outline. The species-typical structure of many nests results from variation in the size, shape, number and arrangement of these basic elements. Nest architecture can be rendered by filling subterranean nests with a thin slurry of orthodontal plaster, then excavating and reconstructing the hardened cast. Photographs of such nest casts of nine species of ants from northern Florida show the range and type of variation of architecture. Preservation conditions under which ant nests could form complex trace fossils are discussed, and reports of such traces reviewed. The images presented in this paper will help to alert trace fossil specialists to the potential range of appearance of such nest fossils

    The Natural History of the Arboreal Ant, Crematogaster ashmeadi

    Get PDF
    The arboreal ant, Crematogaster ashmeadi Emery (Hymenoptera: Formicidae), is the most dominant arboreal ant in the pine forests of the coastal plain of northern Florida. The majority of pine trees harbor a colony of these ants. The colonies inhabit multiple chambers abandoned by bark-mining caterpillars, especially those of the family Cossidae, in the outer bark of living pines. They also inhabit ground level termite galleries in the bark, often locating the queen in galleries. The density of chambers and ants is highest in the base of the tree and drops sharply with height on the trunk. Because chambers are formed in the inner layer of bark, they gradually move outward as more bark layers are laid down, eventually sloughing off the tree's outer surface. Chambers have a mean lifetime of about 25 yr. The abundant chambers in pine bark are excavated by a small population of caterpillars and accumulate over decades. Ant colonies also inhabit abandoned galleries of woodboring beetles in dead branches in the crowns of pines. Because newly mated queens found colonies in abandoned woodboring beetle galleries in the first dead branches that form on pine saplings, C. ashmeadi is dependent on cavities made by other insects throughout its life cycle, and does little if any excavation of its own. Mature colonies nest preferentially in chambers greater than 10 cm(2) in area, a relatively rare chamber size. In natural pine forests, this does not seem to limit the ant's populations. Founding queens containabout 50% fat and lose about half of their dry weight during the claustral period, converting approximately half of this lost weight into progeny. The claustral period is about 40 to 50 days at 27°C. Mature colonies contain several tens of thousands of workers (est. up to 80,000), and have a life expectancy of 10 to 15 years. Each colony occupies an entire tree, and sometimes two trees if they are close together. Within a colony, there is a single queen capable of laying up to 450 eggs/day during the warm season. Such queens weigh 12 to 18 mg, have 50 to 60 active ovarioles and 120 to 600 vitellogenic oocytes in their ovaries. Mature colonies begin producing sexual brood in late April or early May. Sexual adults are present from late May through June. Mating flights commence in June and most sexuals have left their natal nests by late July. Female sexuals are an especially large investment; the energetic content of a single, flight-ready female sexual is almost 20 times that of a worker. The newly mated queen sequesters a mean of 2.64 × 10(6) sperm in her spermatheca, a supply that should last her for 16 years at the observed reproductive rates

    Allometry of Workers of the Fire Ant, Solenopsis invicta

    Get PDF
    The relationship between worker body size and the shape of their body parts was explored in the polymorphic ant, Solenopsis invicta. The data consisted of 20 measurements of body parts as well as sums of some of these measurements. Size-free shape variables were created by taking the ratios of relevant measures. After log-transformation, these ratios were regressed against the logarithm of total body length, or against the log of the size of the parent part. Slopes of zero indicated that shape did not change with size, and non-zero slopes signaled a size-related change of shape. Across the range of worker sizes, the head length retained a constant proportion to body length, but relative headwidth increased such that head shape changed from a barrel-profile to a somewhat heart-shaped profile. Antennae became relatively smaller, with the club contributing more to this decline than the other parts. The alinotum became relatively shorter and higher (more humped), and the gaster increased in both relative width and length, and therefore in volume. All three pairs of legs were isometric to body length. The component parts of the legs, with one exception, were isometric to their own total leg length. The body of S. invicta Abbreviation: / HL: head length BL: body length HW1: width across the eyes HW2: width above the eyes HW3: width below the eye

    Ant community change across a ground vegetation gradient in north Florida's longleaf pine flatwoods

    Get PDF
    Ant communities in longleaf pine habitats are poorly known and hence the naturally occurring ant assemblages of a large portion of southeastern North America are not well understood. This study examined the diverse ant community found in the longleaf pine flatwoods of north Florida and tested how ant diversity changes along a herbaceous ground cover gradient. Restoring the ground cover to its original floral composition is an important focus of longleaf pine conservation and hence it is important to understand how native faunal communities vary with ground cover variation. Using 4 sampling methods, we characterized the ant community and analyzed its within-habitat variation among 12 study sites. We found the highest plot species richness (55 species) and within-habitat species richness (72 species) ever recorded for North American ants. The ants formed three distinct communities. The low-diversity arboreal and subterranean assemblages varied little across forest stands while the diversity of the species-rich ground foraging ant community was negatively correlated with percent herbaceous cover. The imported fire ant, Solenopsis invicta Abbreviation: / ANF: Apalachicola National Fores

    Distribution, spread, and ecological associations of the introduced ant Pheidole obscurithorax in the southeastern United States

    Get PDF
    A field survey of the southeastern United States showed that Pheidole obscurithorax Naves, an ant introduced from South America, inhabits a 80-km-wide band along the coast between Mobile, Alabama, and Tallahassee, Florida, and is continuing to increase its range. In Tallahassee P. obscurithorax is rapidly spreading, and its nest density increased by a factor of 6.4 over a two-year period. Evidence suggests that P. obscurithorax has spread gradually by natural means. It coexists with the fire ant Solenopsis invicta Buren, appears to be part of a largely exotic community of ants that are tolerant of highly disturbed habitats, and seems to have little negative effect on the ant communities that it invades

    Ant distribution in relation to ground water in north Florida pine flatwoods

    Get PDF
    Longleaf pine savannas are one of the most threatened ecosystems in the world, yet are under-studied. Ants are a functionally important and diverse group of insects in these ecosystems. It is largely unknown how local patterns of species diversity and composition are determined through the interaction of this dominant animal group with abiotic features of longleaf pine ecosystems. Here we describe how an important abiotic variable, depth to water table, relates to ant species distributions at local scales. Pitfall trapping studies across habitat gradients in the Florida coastal plains longleaf pine flatwoods showed that the ant community changed with mild differences in habitat. In this undulating landscape, elevation differences were less than 2 m, and the depth to the water table ranged from \u3c 20 cm to 1.2 m. The plant species composing the ground cover were zoned in response to depth to water, and shading by canopy trees increased over deeper water tables. Of the 27 ant species that were analyzed, depending on the statistical test, seven or eight were significantly more abundant over a deep water table, eight to ten over a shallow one, and nine to eleven were not significantly patterned with respect to depth to water. Ant species preferring sites with shallow groundwater also preferred the shadier parts of the sites, while those preferring sites with deeper groundwater preferred the sunnier parts of the sites. This suggests that one group of species prefers hot-dry conditions, and the other cooler-moist. Factor analysis and abundance-weighted mean site characteristics generally confirmed these results. These results show that ant communities in this region respond to subtle differences in habitat, but whether these differences arise from founding preferences, survival, competition, or some combination of these is not known

    The Nest Architecture of Three Species of North Florida Aphaenogaster Ants

    Get PDF
    The architecture of the subterranean nests of Aphaenogaster floridana Smith (Hymenoptera: Formicidae), A. treatae Forel and A. ashmeadi (Emery), was studied from plaster, wax, or metal casts. After structural features were quantified from digital images, the entombed ants were retrieved from the plaster by dissolution or wax casts by melting and counted. Nests of all three species were rather simple, small and vertical, with horizontal chambers connected by vertical shafts. Shafts descending to lower chambers tended to arise from chamber edges, whereas those connecting to a chamber above tended to arise from chamber centers. A. floridana had the largest nests and colonies, and multiple shafts commonly connected upper chambers, a feature lacking in the other two species. In A. floridana nests a higher proportion of chamber area and greater spacing between chambers occurred in the deeper parts of the nest, regardless of nest size. The other two species showed no vertical differentiation of any size-free measure at any nest size. In all three species, nest size increased more slowly than the worker population, so crowding was greater in large colonies than in small, in contrast to the situation in three other ant species for which data were available. An appendix with stereo images of all casts is provided

    The Seasonal Natural History of the Ant, Dolichoderus mariae, in Northern Florida

    Get PDF
    Dolichoderus mariae Forel, (Hymenoptera: Formicidae) is an uncommon, monomorphic but locally abundant, reddish-brown ant of peculiar nesting habits, whose range includes most of the eastern USA. In north Florida the ant excavates soil under wiregrass clumps or other plants with fibrous roots to form a single, large, shallow, conical or ovoid chamber broadly open to the surface around the plant base. Colonies are highly polygyne and, during the warm season, inhabit multiple nests connected only by above ground trails, over which nests exchange workers. Although monomorphic, worker size may differ significantly between colonies. The colony cycle is dominated by strong seasonal polydomy. From one or two over-wintering nests, the colonies expanded to occupy up to 60 nests by late summer, then retract once more to one or two nests by mid-winter. The worker-to-queen ratio changed greatly during this cycle, with over two thousand workers per queen during fall and winter, dropping to a low of about 300 during midsummer. Most of these summer queens probably die during the fall. Colonies reoccupy roughly the same area year to year even though they contract down to one or two nests in winter. Observation of fights in the contact zone between colonies suggested that the colonies are territorial. The ants subsist by tending aphids and scale insects for honeydew and scavenging for dead insects within their territories
    • …
    corecore