140 research outputs found

    High-affinity binding sites involved in the import of porin into mitochondria

    Get PDF
    The specific recognition by mitochondria of the precursor of porin and the insertion into the outer membrane were studied with a radiolabeled water-soluble form of porin derived from the mature protein. High-affinity binding sites had a number of 5-10 pmol/mg mitochondrial protein and a ka of 1-5 X 10(8) M-1. Binding was abolished after trypsin pretreatment of mitochondria indicating that binding sites were of protein-aceous nature. Specifically bound porin could be extracted at alkaline pH but not by high salt and was protected against low concentrations of proteinase K. It could be chased to a highly protease resistant form corresponding to mature porin. High-affinity binding sites could be extracted from mitochondria with detergent and reconstituted in asolectin-ergosterol liposomes. Water-soluble porin competed for the specific binding and import of the precursor of the ADP/ATP carrier, an inner membrane protein. We suggest that (i) binding of precursors to proteinaceous receptors serves as an initial step for recognition, (ii) the receptor for porin may also be involved in the import of precursors of inner membrane proteins, and (iii) interaction with the receptor triggers partial insertion of the precursor into the outer membrane

    Mitochondrial protein import

    Get PDF
    Proteolytic degradation of receptor sites on the mitochondrial surface strongly reduces the efficiency of mitochondrial protein import. The remaining residual import still involves basic mechanisms of protein import, including: insertion of precursors into the outer membrane, requirement for ATP and a membrane potential, and translocation through contact sites between both membranes. The import of a chloroplast protein into isolated mitochondria which occurs with a low rate is not inhibited by a protease-pretreatment of mitochondria, indicating that this precursor only follows the bypass pathway. The low efficiency of bypass import suggests that this unspecific import does not disturb the uniqueness of mitochondrial protein composition. We conclude that mitochondrial protein import involves a series of steps in which receptor sites appear to be responsible for the specificity of protein uptake

    MOM19, an import receptor for mitochondrial precursor proteins

    Get PDF
    We have identified a 19 kd protein of the mitochondrial outer membrane (MOM19). Monospecific IgG and Fab fragments directed against MOM19 inhibit import of precursor proteins destined for the various mitochondrial subcompartments, including porin, cytochrome c1, Fe/S protein, F0 ATPase subunit 9, and F1 ATPase subunit β. Inhibition occurs at the level of high affinity binding of precursors to mitochondria. Consistent with previous functional studies that suggested the existence of distinct import sites for ADP/ATP carrier and cytochrome c, we find that import of those precursors is not inhibited. We conclude that MOM19 is identical to, or closely associated with, a specific mitochondrial import receptor

    Import pathways of precursor proteins into mitochondria

    Get PDF
    The precursor of porin, a mitochondrial outer membrane protein, competes for the import of precursors destined for the three other mitochondrial compartments, including the Fe/S protein of the bc1- complex (intermembrane space), the ADP/ATP carrier (inner membrane), subunit 9 of the F0-ATPase (inner membrane), and subunit beta of the F1- ATPase (matrix). Competition occurs at the level of a common site at which precursors are inserted into the outer membrane. Protease- sensitive binding sites, which act before the common insertion site, appear to be responsible for the specificity and selectivity of mitochondrial protein uptake. We suggest that distinct receptor proteins on the mitochondrial surface specifically recognize precursor proteins and transfer them to a general insertion protein component (GIP) in the outer membrane. Beyond GIP, the import pathways diverge, either to the outer membrane or to translocation contact-sites, and then subsequently to the other mitochondrial compartments

    Mitochondrial porin of Neurospora crassa

    Get PDF
    cDNA encoding porin of Neurospora crassa, the major protein component of the outer mitochondrial membrane, was isolated and the nucleotide sequence was determined. The deduced protein sequence consists of 283 amino acids (29,979 daltons) and shows sequence homology of around 43% to yeast porin; however, no significant homology to bacterial porins was apparent. According to secondary structure predictions, mitochondrial porin consists mainly of membrane-spanning sided beta-sheets. Porin was efficiently synthesized in vitro from the cDNA; this allowed us to study in detail its import into mitochondria. Thereby, three characteristics of import were defined: (i) import depended on the presence of nucleoside triphosphates; (ii) involvement of a proteinaceous receptor-like component on the surface of the mitochondria was demonstrated; (iii) insertion into the outer membrane was resolved into at least two distinct steps: specific binding to high-affinity sites and subsequent assembly to the mature form

    A water-soluble form of porin from the mitochondrial outer membrane of Neurospora crassa

    Get PDF
    Mitochondrial porin, the outer membrane pore-forming protein, was isolated in the presence of detergents and converted into a water- soluble form. This water-soluble porin existed under nondenaturing conditions as a mixture of dimers and oligomers. The proportion of dimers increased with decreasing porin concentration during conversion. Water-soluble porin inserted spontaneously into artificial bilayers as did detergent-solubilized porin. Whereas the latter form had no specific requirements for the lipid composition of the bilayer, water- soluble porin inserted only into membranes containing a sterol, and only in the presence of very low concentrations of Triton X-100 (0.001% w/v) in the solution bathing the bilayer. The channels formed by water- soluble porin were indistinguishable from those formed by detergent- purified porin with respect to specific conductance and voltage dependence of conductance. Water-soluble porin bound tightly in a saturable fashion to isolated mitochondria. The bound form was readily accessible to added protease, indicating its presence on the mitochondrial surface. The number of binding sites was in the range of 5-10 pmol/mg of mitochondrial protein. Water-soluble porin apparently binds to a site on the assembly pathway of the porin precursor, since mitochondria whose binding sites were saturated with the water-soluble form did not import porin precursor synthesized in a cell-free system

    Quantitative morphology of renal cortical structures during compensatory hypertrophy

    Get PDF
    The compensatory hypertrophy in different renal cortical structures was studied in rats 10 and 21 days after unilateral nephrectomy (UNX). Quantitative morphological/stereological analysis revealed significant increases in total renal cortical volume - 33% on day 10 and 48% on day 21 - after UNX. These changes were paralleled by significant increments in the volumes of proximal convoluted tubule (PCT, 55%), distal convoluted tubule (DCT, 114%), and cortical collecting duct (CCD, 106%) segments on day 10. The corresponding changes on day 21 were 76, 122, and 212%, respectively. These alterations were accompanied by increases in segment length; 3% PCT, 23% DCT, and 50% CCD on day 10 and 9% PCT, 30% DCT, and 142% CCD on day 21 after UNX. The total luminal and basolateral cell membrane surface areas also exhibited a time-dependent increase after UNX. The increments in both luminal and basolateral membrane domains in PCT and DCT after 10 days were not significant, but reached significance after 21 days (PCT: luminal membrane 21%, basolateral membrane 63%; DCT: luminal membrane 98%, basolateral membrane 63%). In contrast, CCD membrane areas had increased substantially already 10 days after UNX (luminal membrane 92%, basolateral membrane 71%). It declined subsequently by day 21 (luminal membrane 57%, basolateral membrane 32%). The cell rubidium concentration after a 30-second rubidium infusion, an index of Na-K-ATPase activity, as well as sodium concentrations were unaltered in cells of all nephron segments investigated. Altogether the stereological analysis shows that the compensatory increase in organ volume can be attributed primarily to an increase in nephron epithelial volume. The PCT responds with `radial' hypertrophy (thickening of the tubular epithelial wall), while the DCT undergoes `length' hypertrophy (increase of tubular length without thickening of the tubular wall and without an increase in number of cells). This type of hypertrophy is especially prominent on day 21 after UNX for the CCD which doubles in length. Only on day 10 does the CCD seem to respond with hyperplasia. Adaptive changes in response to UNX develop gradually. Only a few of the morphological parameters studied had completed their change by 10 days, the majority required longer

    Role of ATP in mitochondrial protein import

    Get PDF
    The role of nucleoside triphosphates (NTPs) in the import of porin into the mitochondrial outer membrane was investigated with two forms of the porin precursor: the in vitro synthesized biosynthetic precursor (bs- porin) and a water-soluble form of porin (ws-porin) obtained by subjecting the membrane-derived porin to an acid-base treatment (exposure to trichloroacetic acid, followed by alkali and rapid neutralization). The import of ws-porin into mitochondria did not require NTPs, whereas the import of bs-porin required NTPs. In other characteristics, such as binding to a specific receptor protein on the mitochondrial surface, two-step insertion into the outer membrane, and formation of specific membrane channels, ws-porin was indistinguishable from bs-porin. Thus, the acid-base treatment applied in the preparation of ws-porin can substitute for the NTP-requiring step in mitochondrial protein import. We conclude that NTPs are required for unfolding mitochondrial precursor proteins ("translocation competent folding")
    corecore