18,349 research outputs found

    Efficient computation of the gravitational wave spectrum emitted by eccentric massive black hole binaries in stellar environments

    Full text link
    We present a fast and versatile method to calculate the characteristic spectrum hch_c of the gravitational wave background (GWB) emitted by a population of eccentric massive black hole binaries (MBHBs). We fit the spectrum of a reference MBHB with a simple analytic function and show that the spectrum of any other MBHB can be derived from this reference spectrum via simple scalings of mass, redshift and frequency. We then apply our calculation to a realistic population of MBHBs evolving via 3-body scattering of stars in galactic nuclei. We demonstrate that our analytic prescription satisfactorily describes the signal in the frequency band relevant to pulsar timing array (PTA) observations. Finally we model the high frequency steepening of the GWB to provide a complete description of the features characterizing the spectrum. For typical stellar distributions observed in massive galaxies, our calculation shows that 3-body scattering alone is unlikely to affect the GWB in the PTA band and a low frequency turnover in the spectrum is caused primarily by high eccentricities.Comment: 12 pages, 9 figures, published in MNRA

    Existence of negative differential thermal conductance in one-dimensional diffusive thermal transport

    Get PDF
    We show that in a finite one-dimensional (1D) system with diffusive thermal transport described by the Fourier's law, negative differential thermal conductance (NDTC) cannot occur when the temperature at one end is fixed. We demonstrate that NDTC in this case requires the presence of junction(s) with temperature dependent thermal contact resistance (TCR). We derive a necessary and sufficient condition for the existence of NDTC in terms of the properties of the TCR for systems with a single junction. We show that under certain circumstances we even could have infinite (negative or positive) differential thermal conductance in the presence of the TCR. Our predictions provide theoretical basis for constructing NDTC-based devices, such as thermal amplifiers, oscillators and logic devices

    Neuron Segmentation Using Deep Complete Bipartite Networks

    Full text link
    In this paper, we consider the problem of automatically segmenting neuronal cells in dual-color confocal microscopy images. This problem is a key task in various quantitative analysis applications in neuroscience, such as tracing cell genesis in Danio rerio (zebrafish) brains. Deep learning, especially using fully convolutional networks (FCN), has profoundly changed segmentation research in biomedical imaging. We face two major challenges in this problem. First, neuronal cells may form dense clusters, making it difficult to correctly identify all individual cells (even to human experts). Consequently, segmentation results of the known FCN-type models are not accurate enough. Second, pixel-wise ground truth is difficult to obtain. Only a limited amount of approximate instance-wise annotation can be collected, which makes the training of FCN models quite cumbersome. We propose a new FCN-type deep learning model, called deep complete bipartite networks (CB-Net), and a new scheme for leveraging approximate instance-wise annotation to train our pixel-wise prediction model. Evaluated using seven real datasets, our proposed new CB-Net model outperforms the state-of-the-art FCN models and produces neuron segmentation results of remarkable qualityComment: miccai 201
    • …
    corecore