6,075 research outputs found

    Submodular linear programs on forests

    Get PDF
    A general linear programming model for an order-theoretic analysis of both Edmonds' greedy algorithm for matroids and the NW-corner rule for transportation problems with Monge costs is introduced. This approach includes the model of Queyranne, Spieksma and Tardella (1993) as a special case. We solve the problem by optimal greedy algorithms for rooted forests as underlying structures. Other solvable cases are also discussed

    Packing a bin online to maximize the total number of items

    Get PDF
    A bin of capacity 1 and a nite sequence of items of\ud sizes a1; a2; : : : are considered, where the items are given one by one\ud without information about the future. An online algorithm A must\ud irrevocably decide whether or not to put an item into the bin whenever\ud it is presented. The goal is to maximize the number of items collected.\ud A is f-competitive for some function f if n() f(nA()) holds for all\ud sequences , where n is the (theoretical) optimum and nA the number\ud of items collected by A.\ud A necessary condition on f for the existence of an f-competitive\ud (possibly randomized) online algorithm is given. On the other hand,\ud this condition is seen to guarantee the existence of a deterministic online\ud algorithm that is "almost" f-competitive in a well-dened sense

    On some approximately balanced combinatorial cooperative games

    Get PDF
    A model of taxation for cooperativen-person games is introduced where proper coalitions Are taxed proportionally to their value. Games with non-empty core under taxation at rateɛ-balanced. Sharp bounds onɛ in matching games (not necessarily bipartite) graphs are estabLished. Upper and lower bounds on the smallestɛ in bin packing games are derived and euclidean random TSP games are seen to be, with high probability,ɛ-balanced forɛ≈0.06

    An algebraic framework for the greedy algorithm with applications to the core and Weber set of cooperative games

    Get PDF
    An algebraic model generalizing submodular polytopes is presented, where modular functions on partially ordered sets take over the role of vectors in Rn{\mathbb R}^n. This model unifies various generalizations of combinatorial models in which the greedy algorithm and the Monge algorithm are successful and generalizations of the notions of core and Weber set in cooperative game theory. As a further application, we show that an earlier model of ours as well as the algorithmic model of Queyranne, Spieksma and Tardella for the Monge algorithm can be treated within the framework of usual matroid theory (on unordered ground-sets), which permits also the efficient algorithmic solution of the intersection problem within this model. \u

    Protein sorting to mitochondria

    Get PDF
    According to the endosymbiont hypothesis, mitochondria have lost the autonomy of their prokaryotic ancestors. They have to import most of their proteins from the cytosol because the mitochondrial genome codes for only a small percentage of the polypeptides that reside in the organelle. Recent findings show that the sorting of proteins into the mitochondrial subcompartments and their folding and assembly follow principles already developed in prokaryotes. The components involved may have structural and functional equivalents in bacteria

    A Lagrangian relaxation approach to the edge-weighted clique problem

    Get PDF
    The bb-clique polytope CPbnCP^n_b is the convex hull of the node and edge incidence vectors of all subcliques of size at most bb of a complete graph on nn nodes. Including the Boolean quadric polytope QPnQP^n as a special case and being closely related to the quadratic knapsack polytope, it has received considerable attention in the literature. In particular, the max-cut problem is equivalent with optimizing a linear function over QPnnQP^n_n. The problem of optimizing linear functions over CPbnCP^n_b has so far been approached via heuristic combinatorial algorithms and cutting-plane methods. We study the structure of CPbnCP^n_b in further detail and present a new computational approach to the linear optimization problem based on Lucena's suggestion of integrating cutting planes into a Lagrangian relaxation of an integer programming problem. In particular, we show that the separation problem for tree inequalities becomes polynomial in our Lagrangian framework. Finally, computational results are presented. \u

    Electron-translation effects in heavy-ion scattering

    Get PDF
    The origin and importance of electron-translation effects within a molecular description of electronic excitations in heavy-ion collisions is investigated. First, a fully consistent quantum-mechanical description of the scattering process is developed; the electrons are described by relativistic molecular orbitals, while the nuclear motion is approximated nonrelativistically. Leaving the quantum-mechanical level by using the semiclassical approximation for the nuclear motion, a set of coupled differential equations for the occupation amplitudes of the molecular orbitals is derived. In these coupled-channel equations the spurious asymptotic dynamical couplings are corrected for by additional matrix elements stemming from the electron translation. Hence, a molecular description of electronic excitations in heavy-ion scattering has been achieved, which is free from the spurious asymptotic couplings of the conventional perturbated stationary-state approach. The importance of electron-translation effects for continuum electrons and positrons is investigated. To this end an algorithm for the description of continuum electrons is proposed, which for the first time should allow for the calculation of angular distributions for δ electrons. Finally, the practical consequences of electron-translation effects are studied by calculating the corrected coupling matrix elements for the Pb-Cm system and comparing the corresponding K-vacancy probabilities with conventional calculations. We critically discuss conventional methods for cutting off the coupling matrix elements in coupled-channel calculations

    Asymptotically correct shell model for nuclear fission

    Get PDF
    A two-center shell model with oscillator potentials, l→·s→ forces, and l→2 terms is developed. The shell structures of the original spherical nucleus and those of the final fragments are reproduced. For small separation of the two centers the level structure resembles the Nilsson scheme. This two-center shell model might be of importance in problems of nuclear fission

    Protein Folding in the Cell

    Get PDF
    • …
    corecore